Name: _

Please show all work and explain your answers. Sketch.

- 1. (20 pts.) The position (in km) of a cruise missile is given as a function of time from launch (in minutes) by x(t) = 2t, $y(t) = t^3$, $z(t) = 4t t^2$.
 - (a) When does the missile hit its ground target? What are the target's coordinates? How far is the target from the launch site?
 - (b) What are the missile's velocity and speed upon impact?
- 2. (20 pts.) Let f be the transformation of the plane given by $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 3x y^2 \\ x^3y \end{bmatrix}$. Find the linear approximation to f at the point p = (2, -3).
- 3. (20 pts.) Suppose f(x, y) is a differentiable function from the plane to the reals, and we have new coordinates s = 2x y and t = 3y x.
 - (a) Express the first partial derivatives of f with respect to x and y in terms of those with respect to s and t.
 - (b) Use the formulas derived in part (a) to express the second partial derivative of f with respect to y in terms of the coordinates s and t.
- 4. (20 pts.) Use Cavalieri's principle to compute the volume of a regular pyramid with height 50 m and a square base of side 80 m.
- 5. (20 pts.) Find the arc length of the helix $\gamma(t) = (5\sin(t), 5\cos(t), -2t)$ between $(0, -5, 2\pi)$ and $(0, -5, -2\pi)$. Sketch.
- 6. (20 pts.) Find the flux of F(x, y, z) = (2, x, z) through the surface $x^2 + y^2 + z^2 = 9, z \le 0$. Sketch the surface and F at several points on the surface.
- 7. (20 pts.) Find the work done by the force field $F(x, y, z) = (x+yz^2, xz^2, 2xyz)$ in moving a particle from (-1, 1, 2) to (1, -2, -1). Does it matter along which path the particle is moved? Explain.
- 8. (20 pts.) Let $F = (6xz^2, 2y^3, 6zx^2)$ and $\omega = F \cdot dS$, where dS = (dy dz, dz dx, dx dy).
 - (a) Compute $d\omega$.
 - (b) Use the general fundamental theorem of calculus to express the flux of F through the unit sphere as a density integral with respect to dx dy dz. Evaluate this integral.

1	2	3	4	5	6	7	8	total (160)	(%)