Calc ulus for Applications/ MAT3243

Midterm 1/ October 20, 1999 / Instructor: D. Gokhman

Name:
Please show all work and box the answers, where appropriate.

1. (10 pts.) Find parametric formulas for the following geometric objects. Sketch.
(a) Line in \mathbf{R}^{3} through ($0,0,1$) and ($1,1,0$).
(b) Plane (through the origin) containing the vectors $(1,1,0)$ and $(1,0,1)$.
2. (5 pts.) Convert $(-1, \sqrt{3}, 2)$ to cylindrical coordinates.
3. (10 pts.) Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be reflection with respect to the line $y=-x$.
(a) Find $f(\widehat{\imath})$ and $f(\widehat{\jmath})$.
(b) What matrix represents f with respect to the standard basis?
(c) Given $v=(x, y)$, find $f(v)$ in terms of x and y.
4. (10 pts.) Sketch three level curves in \mathbf{R}^{2} and then the graph of $z^{2}=x^{2}-y^{2}$.
5. (10 pts.) Evaluate each of the following limits or explain why the limit fails to exist.
(i) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\tan \left(x^{2}+y^{2}\right)}$
(ii) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
6. (10 pts.) Let $f(x, y)=(x+3)^{2}+(y+1)^{2}, g(x, y)=10+m x+n y$, and $\varepsilon(x, y)=$ $f(x, y)-g(x, y)$.
(a) Find m and n such that g is the tangent plane to f at $(0,0,10)$.
(b) With these values of m and n compute $\lim _{(x, y) \rightarrow(0,0)} \frac{\varepsilon(x, y)}{\sqrt{x^{2}+y^{2}}}$.

1	2	3	4	5	6	total (55)	$\%$

