Name: _____ Pseudonym: _____ Please show all work and box the answers, where appropriate.

- 1. (10 pts.) Sketch the given points and convert between the specified coordinate systems:
 - (a) (-1, -1, -1) from cartesian to cylindrical.
 - (b) $(\rho, \varphi, \theta) = (2, 5\pi/6, 3\pi/2)$ from spherical to cartesian.
- 2. (10 pts.) Let $f: \mathbf{R}^2 \to \mathbf{R}^2$ be projection to the line x + 2y = 0. Find the matrix that represents f with respect to the standard basis and a general formula for f(x, y).
- 3. (10 pts.) Sketch at least three level curves in \mathbf{R}^2 and then the graph in \mathbf{R}^3 of $z = y^2 x^3$.
- 4. (10 pts.) Let $f(x, y) = x + 2y^2$, g(x, y) = b + mx + ny, and $\varepsilon(x, y) = f(x, y) g(x, y)$.
 - (a) Find b, m, and n such that g is the tangent plane to f at (2, 1, 4).
 - (b) With these values of b, m, and n show that $\varepsilon(x, y)/d(x, y) \to 0$ as $(x, y) \to (2, 1)$, where d(x, y) is the distance from (x, y) to (2, 1). (Hint: change variables: let h = x - 2, k = y - 1.)
- 5. (10 pts.) Let g(x, y, z) = xyz and $f(u) = \cos(u)\hat{j} + \ln(u^2 + 1)\hat{k}$. Find $f \circ g$, D(f), D(g), and $D(f \circ g)$.
- 6. (10 pts.) Find an equation for the plane tangent to $x^3 y^2 z = 7$ at (2, 1, 1).
- 7. (10 pts.) Consider a curved segment $s(t) = (t, t^{3/2}, t), 0 \le t \le 1$.
 - (a) Find a parametric formula for the line tangent to the curve at (0,0,0). Sketch.
 - (b) Find the arclength of the above curved segment.
- 8. (10 pts.) Integrate $y \, dx y^2 x \, dy$ along the straight line segment from $\hat{j} \hat{i}$ to $\hat{i} \hat{j}$.
- 9. (10 pts.) Let $F(x, y, z) = (yz, y + zx, xy + z^2)$. Find a function f(x, y, z) such that D(f) = F and use it to integrate $F \cdot ds$ along an arbitrary path from the origin to (-1, -1, -1).

1	2	3	4	5	6	7	8	9	total (90)