Calculus for Applications / MAT 3243.001 Midterm 1 / October 12, 1998 / Instructor: D. Gokhman

Name:

Please show all work and box the answers.

- 1. (20 pts.) Let P be the plane in \mathbb{R}^3 spanned by $\hat{\imath} 3\hat{k}$ and $\hat{\jmath} + 2\hat{k}$. Let $p = \hat{\imath} \hat{\jmath} + 2\hat{k}$. Let L be the line through 0 and p. Let Q be the plane containing p parallel to P.
 - (a) Express Q and L in parametric form.
 - (b) Express Q as the locus of a linear equation.
 - (c) Is L perpendicular to P? Explain.
- 2. (21 pts.) Sketch the following manifolds and express them in parametric form:
 - (a) Straight line in \mathbb{R}^3 through \hat{k} in the direction $\hat{i} + \hat{j}$.
 - (b) The ray (half-line) in \mathbf{R}^3 from 0 in the direction $-\hat{\imath} \hat{k}$.
 - (c) Straight line segment in \mathbf{R}^2 from $\hat{\imath}$ to $\hat{\jmath}$.
 - (d) The circle in \mathbf{R}^{2} of radius 2 centered at 0.
 - (e) The circle in \mathbf{R}^2 of radius 2 centered at $\hat{\imath} + 3\hat{\jmath}$.
 - (f) Right half of the circle in (d).
 - (g) Circle in \mathbb{R}^3 of radius 3 centered at \hat{j} parallel to the x-z plane.
- 3. (10 pts.) Let $v = \hat{i} \hat{j}$. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(u) = \operatorname{comp}_v(u) = u \cdot v / |v|$.
 - (a) Find the values of f on the standard basis vectors of \mathbf{R}^3 .
 - (b) Is f is a linear map? Explain.
- 4. (10 pts.) Let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation by $\pi/2$ with respect to the origin.
 - (a) Find the matrix that represents g with respect to the standard basis.
 - (b) Write down the formula for g.
- 5. (extra credit) Sketch the following parametrized manifolds in \mathbb{R}^3 .
 - (a) $\cos t\hat{\imath} + \sin t\hat{\jmath} + t\hat{k}$, where $0 \le t < \infty$.
 - (b) $\sin \varphi (\cos \theta \hat{\imath} + \sin \theta \hat{\jmath}) + \cos \varphi \hat{k}$, where $0 \le \varphi \le \pi/2, -\pi < \theta \le \pi$.
 - (c) $r(\cos\theta\hat{\imath} + \sin\theta\hat{\jmath}) + z\hat{k}$, where $1 \le r \le 2, -\pi/2 \le \theta \le \pi/2, 0 \le z \le 3$.

1	2	3	4	total (61)	%