Calculus for Applications/ MAT 3243.001

Final / December 7, 1998 / Instructor: D. Gokhman

Name: \qquad Pseudonym:
Please show all work and box the answers.

1. (10 pts.) Let L be line $\{(3 s+2,4 s+1): s \in \mathbf{R}\}$ in \mathbf{R}^{2}. Express L as the locus of a single equation. Sketch the line.
2. (20 pts.) Sketch the following manifolds, express them in parametric form, and describe the boundary of each manifold:
(a) The ray (half-line) in \mathbf{R}^{3} from $\widehat{\imath}$ in the direction $\widehat{\jmath}-\widehat{k}$.
(b) Straight line segment in \mathbf{R}^{3} from \widehat{k} to $\widehat{\jmath}$.
(c) Right half of the circle in \mathbf{R}^{2} of radius 3 centered at $\hat{\imath}-2 \hat{\jmath}$.
(d) Circle in \mathbf{R}^{3} of radius 2 centered at $\widehat{\imath}+\widehat{\jmath}$ parallel to the $y-z$ plane.
(e) Parallelogram in \mathbf{R}^{3} with 3 of the vertices $\widehat{k}, 2 \widehat{k}, \widehat{\imath}+\widehat{\jmath}$.
3. (10 pts.) Let $v=\widehat{\imath}+\widehat{\jmath}, w=-\widehat{\imath}+\widehat{\jmath}+\widehat{k}$. Define $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by $f(u)=\operatorname{proj}_{v}(u)+\operatorname{proj}_{w}(u)$.
(a) Find the values of f on the standard basis vectors of \mathbf{R}^{3}.
(b) Is f is a linear map? Explain.
4. (10 pts .) Let $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation by $-3 \pi / 4$ with respect to the origin.
(a) Find the matrix that represents g with respect to the standard basis.
(b) Write down the formula for g.
5. (15 pts.) Let $f=y^{x z}$ and $F=(x+y)^{3} \widehat{\imath}+\sin (x y) \widehat{\jmath}+\cos (x y z) \widehat{k}$.

Compute grad $f, \operatorname{div} F$, and curl F.
6. (15 pts.) Compute $d \omega$
(a) $\omega=y^{2} \sin (x z)$
(b) $\omega=x y d x+\left(x^{2}-y^{2}\right) d y$
(c) $\omega=x^{3} z^{2} d y d z+\cos (2 y) d z d x+e^{x} y z d x d y$
7. (10 pts.) Find an equation for the plane tangent to the surface given by $x e^{z} \cos y=1$ at the point $-\widehat{\imath}+\pi \widehat{\jmath}$.
8. (20 pts .) Evaluate the following integrals
(a) $\int_{M}-y d x+x d y-d z$, where M is the curve $\{\cos t \widehat{\imath}+\sin t \widehat{\jmath}+2 t \widehat{k}: \pi \leq t \leq 2 \pi\}$
(b) $\int_{M} x d y d z+y d z d x$, where M is the cylinder $x^{2}+y^{2}=9,0 \leq z \leq 2$
(c) $\int_{M} z^{2} d x d y d z$, where M is the dowel $x^{2}+y^{2} \leq 9,0 \leq z \leq 2$
(d) Surface area: $\int_{M}|d S|$, where M is $\{s \widehat{\imath}+(s+t) \widehat{\jmath}+t \widehat{k}: 0 \leq s \leq 2,0 \leq t \leq 2\}$

1	2	3	4	5	6	7	8	total (110)	$\%$

