Calculus for Applications / MAT 3243.001 Midterm (extra) / October 22, 1997 / Instructor: D. Gokhman

Name: _

Please show all work and box the final answers.

- 1. (10 pts.) Let $u = (-1, 2) \in \mathbf{R}^2$ and let $f : \mathbf{R}^2 \to \mathbf{R}$ be defined by $f(v) = \operatorname{comp}_u v$. In other words, f maps a vector to its component along u. Compute df. (Hint: let v = (x, y) and express f(v) as a function of x and y.)
- 2. (20 pts.) Consider the surface in \mathbb{R}^3 given by $(x^3 2z)(y + z^4)^5 = 1$. Find coefficients A, B, C, D such that Ax + By + Cz = D gives the tangent plane to this surface at the point (1, 1, 0).
- 3. (15 pts.) Parametrize the following curves. Specify the range for the parameter.
 - (a) The straight line segment in \mathbb{R}^3 from (-2, 1, 7) to (6, 9, -1).
 - (b) The circle of radius 2 in the y-z plane centered at (0, 3, -2).
 - (c) The graph of $y = e^x$ in the plane.
- 4. (20 pts.) Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be the vector field defined by $F(x, y, z) = \hat{k} y\,\hat{\imath} + x\,\hat{\jmath}$. Integrate F along the helical segment $\mathbf{c}(t) = 2\cos(t)\,\hat{\imath} + 2\sin(t)\,\hat{\jmath} + t\,\hat{k}, -\pi \leq t \leq \pi$. What is the arclength of this segment?
- 5. (15 pts.) Let $F: \mathbf{R}^3 \to \mathbf{R}^3$ be defined by $F(x, y, z) = e^y \hat{\imath} + (xe^y + ze^{yz})\hat{\jmath} + ye^{yz}\hat{k}$. Find $f: \mathbf{R}^3 \to \mathbf{R}$ such that grad f = F and f(1, 0, 1) = 5.

1	2	3	4	5	total (80)	%