Name: .			
паше.			

Please show all work and box the final answers.

- 1. (10 pts.) Let $u = (4, -3) \in \mathbf{R}^2$ and let $f : \mathbf{R}^2 \to \mathbf{R}$ be defined by $f(v) = \text{comp}_u v$. In other words, f maps a vector to its component along u. Compute df. (Hint: let v = (x, y) and express f(v) as a function of x and y.)
- 2. (20 pts.) Consider the surface in \mathbb{R}^3 given by $(x^2-z)(y+z^3)^4=1$. Find coefficients A,B,C,D such that Ax+By+Cz=D gives the tangent plane to this surface at the point (1,1,0).
- 3. (15 pts.) Parametrize the following curves. Specify the range for the parameter.
 - (a) The straight line segment in \mathbb{R}^2 from (2, -1) to (6, 9).
 - (b) The circle of radius 3 in the z-x plane centered at (-1, 0, 5).
 - (c) The graph of $y = \log x$ in the plane.
- 4. (20 pts.) Let $F: \mathbf{R}^3 \to \mathbf{R}^3$ be the vector field defined by $F(x, y, z) = \hat{k} + x \hat{\jmath} y \hat{\imath}$. Integrate F along the helical segment $\mathbf{c}(t) = \cos(t) \hat{\imath} + \sin(t) \hat{\jmath} + t \hat{k}$, $0 \le t \le 2\pi$. What is the arclength of this segment?
- 5. (15 pts.) Let $F: \mathbf{R}^3 \to \mathbf{R}^3$ be defined by $F(x, y, z) = ye^x \, \hat{\imath} + (e^x + ze^{yz}) \, \hat{\jmath} + ye^{yz} \, \hat{k}$. Find $f: \mathbf{R}^3 \to \mathbf{R}$ such that grad f = F and f(0, 1, 0) = -1.

1	2	3	4	5	total (80)	%