Name: \qquad

Please show all work and box the final answers.

1. (10 pts.) Let $u=(4,-3) \in \mathbf{R}^{2}$ and let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be defined by $f(v)=\operatorname{comp}_{u} v$. In other words, f maps a vector to its component along u. Compute $d f$.
(Hint: let $v=(x, y)$ and express $f(v)$ as a function of x and y.)
2. (20 pts.) Consider the surface in \mathbf{R}^{3} given by $\left(x^{2}-z\right)\left(y+z^{3}\right)^{4}=1$. Find coefficients A, B, C, D such that $A x+B y+C z=D$ gives the tangent plane to this surface at the point $(1,1,0)$.
3. (15 pts.) Parametrize the following curves. Specify the range for the parameter.
(a) The straight line segment in \mathbf{R}^{2} from $(2,-1)$ to $(6,9)$.
(b) The circle of radius 3 in the z-x plane centered at $(-1,0,5)$.
(c) The graph of $y=\log x$ in the plane.
4. (20 pts.) Let $F: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the vector field defined by $F(x, y, z)=\widehat{k}+x \widehat{\jmath}-y \widehat{\imath}$. Integrate F along the helical segment $\mathbf{c}(t)=\cos (t) \widehat{\imath}+\sin (t) \widehat{\jmath}+t \widehat{k}, 0 \leq t \leq 2 \pi$. What is the arclength of this segment?
5. (15 pts.) Let $F: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be defined by $F(x, y, z)=y e^{x} \widehat{\imath}+\left(e^{x}+z e^{y z}\right) \widehat{\jmath}+y e^{y z} \widehat{k}$. Find $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ such that grad $f=F$ and $f(0,1,0)=-1$.

1	2	3	4	5	total (80)	$\%$

