Calculus for Applic ations, MAT 3243
Midterm, October 16, 1996
Instructor: D. Gokhman

Name:
Show all work. Box your answers.

1. For the following functions f compute $f(\hat{\imath}), f(\hat{\jmath})$, and $f(2 \hat{\imath}-3 \hat{\jmath})$:
(a) $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is orthogonal projection to $u=(2,-1)$, i.e. $f(v)=\operatorname{comp}_{u} v$.
(b) $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is clockwise rotation by $\frac{\pi}{2}$.
2. For the following functions f compute the derivative matrix $D(f)$.
(a) $f(x, y, z)=\left(x+y^{2}+z^{3}, x y^{2} z^{3}\right)$
(b) $f(x, y)=\left(\cos (x y), y e^{x}, x+y\right)$
3. Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be given by $f(x, y)=x y^{2}$.
(a) Find the equation of the plane tangent to the graph of $z=f(x, y)$ at $(1,-1, f(1,-1))$.
(b) Find the slope of this plane in the direction of $(2,1)$, i.e. the directional derivative of f at $(1,-1)$ along $(2,1)$.
4. Evaluate the following path integrals after parametrizing the given path.
(a) $\int 2 x^{2} y d x-x y^{2} d y$ along the straight line segment from $(0,0)$ to $(-1,2)$.
(b) $\int y d x-x d y$ once around the unit circle counterclockwise.

1	2	3	4	total

