Calculus for Applications, MAT 3243 Final, December 10, 1996 Instructor: D. Gokhman

Name: _

Pseudonym: _

Show all work. Answers alone are not sufficient.

- 1. (40 pts.) Let $f(x, y, z) = (x^2 + y^2 + z^2)^{\frac{1}{2}}$.
 - (a) Compute f(1,0,0) f(2,0,0).
 - (b) Parametrize the straight line segment from (2, 0, 0) to (1, 0, 0).
 - (c) Compute df.
 - (d) Integrate df along this segment.
 - (e) Are the answers in (a) and (d) the same? Explain.
- 2. (40 pts.) Let F(x, y, z) = (-x, -y, -z) and let $B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, -2 \le z \le 2\}$. Note that B is a solid cylinder.
 - (a) Parametrize B.
 - (b) Find the flux of F through the side of the cylinder $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, -2 \le z \le 2\}$.
 - (c) Find the flux of F through the top $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = 2\}$.
 - (d) Find the flux of F through the bottom $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = -2\}$.
 - (e) Compute the divergence $\nabla \cdot F$.
 - (f) Integrate $\nabla \cdot F$ over B.
 - (g) Are the answers in (b)+(c)-(d) and (f) the same? Explain.
- 3. (40 pts.) (40 pts.) Let $\omega = -y \, dx + x \, dy$.
 - (a) Integrate ω over the unit circle $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.
 - (b) Compute $d\omega$.
 - (c) Integrate the flux of $d\omega$ through the unit disc $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$.
 - (d) Are the answers in (b) and (c) the same? Explain.

1a	1b	1c	1d	2a	2b	3a	3b	total (160)