Calculus for Applications, MAT 3243 Final, December 10, 1996 Instructor: D. Gokhman

Name: ____

Pseudonym: _

Show all work. Answers alone are not sufficient.

- 1. (24 pts.) Parametrize the following regions. Specify the ranges for the parameters.
 - (a) The straight line segment from (2, -1, 3) to (1, 0, -2).
 - (b) The plane in \mathbb{R}^3 containing (0, 0, 1), (1, 0, 0), (0, 1, 0).
 - (c) The unit sphere $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$
 - (d) The southern hemisphere of the unit sphere $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \leq 0\}$.
 - (e) The part of the unit sphere contained in the positive orthant: $\{(x, y, z) \in \mathbf{R}^3: x^2 + y^2 + z^2 = 1, x \ge 0, y \ge 0, z \ge 0\}.$
 - (f) The unit ball $\{(x, y, z) \in \mathbf{R}^3 : x^2 + y^2 + z^2 \le 1\}$.
 - (g) The ball of diameter 4 centered at (5, 3, -1).
 - (h) The graph of z = f(x, y) in \mathbb{R}^3 , where $f: \mathbb{R}^2 \to \mathbb{R}$ is a continuous function.

2. (32 pts.) Evaluate the following integrals

- (a) $\int x \, dx + y \, dy + z \, dz$ along the segment $\{(2 t, t, -1 + t): 0 \le t \le 1\}$.
- (b) $\iint x \, dy \, dz + y \, dz \, dx + z \, dx \, dy \text{ through the cylinder } \{(\cos \theta, \sin \theta, z) \colon 0 \le \theta \le 2\pi, -2 \le z \le 2\}.$
- (c) $\iint x \, dy \, dz + y \, dz \, dx + z \, dx \, dy \text{ through the disk } \{(\rho \cos \theta, \rho \sin \theta, 2): 0 \le \rho \le 1, 0 \le \theta \le 2\pi\}.$
- (d) $\iiint (x^2 + y^2) \, dx \, dy \, dz \text{ over the solid cylinder} \\ \{(\rho \cos \theta, \rho \sin \theta, z): 0 < \rho < 1, 0 < \theta < 2\pi, -2 < z < 2\}.$
- 3. (16 pts.) True/false questions. Circle your choice. Justification is not necessary. In this question all functions are differentiable on \mathbb{R}^3 . Lowercase functions are $\mathbb{R}^3 \to \mathbb{R}$ and uppercase functions are $\mathbb{R}^3 \to \mathbb{R}^3$.
- T F (a) The integral of df around any circle is 0.
- T F (b) The flux of the curl $\nabla \times F$ through a sphere is 0.
- T F (c) The integral of divergence $\nabla \cdot F$ over a ball is 0.
- T F (d) If $\nabla \times F = 0$, then F is a gradient, i.e. $F = \nabla f$ for some f.
- T F (e) If df = 0, then f = 0.
- T F (f) $\nabla \times (\nabla f) = 0$
- T F (g) $\nabla(\nabla \cdot F) = 0$
- T F (h) $\nabla \cdot (\nabla \times F) = 0$

1	2a	2b	2c	2d	3	total (72)	%