C alculus for Applic ations, MAT3243

Final, December 10, 1996

Instructor: D. Gokhman

Name: \qquad Pseudonym:

Show all work. Answers alone are not sufficient.

1. (24 pts.) Parametrize the following regions. Specify the ranges for the parameters.
(a) The straight line segment from $(2,-1,3)$ to $(1,0,-2)$.
(b) The plane in \mathbf{R}^{3} containing $(0,0,1),(1,0,0),(0,1,0)$.
(c) The unit sphere $\left\{(x, y, z) \in \mathbf{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$.
(d) The southern hemisphere of the unit sphere $\left\{(x, y, z) \in \mathbf{R}^{3}: x^{2}+y^{2}+z^{2}=1, z \leq 0\right\}$.
(e) The part of the unit sphere contained in the positive orthant:

$$
\left\{(x, y, z) \in \mathbf{R}^{3}: x^{2}+y^{2}+z^{2}=1, x \geq 0, y \geq 0, z \geq 0\right\}
$$

(f) The unit ball $\left\{(x, y, z) \in \mathbf{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\}$.
(g) The ball of diameter 4 centered at $(5,3,-1)$.
(h) The graph of $z=f(x, y)$ in \mathbf{R}^{3}, where $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is a continuous function.
2. (32 pts .) Evaluate the following integrals
(a) $\int x d x+y d y+z d z$ along the segment $\{(2-t, t,-1+t): 0 \leq t \leq 1\}$.
(b) $\iint x d y d z+y d z d x+z d x d y$ through the cylinder $\{(\cos \theta, \sin \theta, z): 0 \leq \theta \leq 2 \pi,-2 \leq z \leq 2\}$.
(c) $\iint x d y d z+y d z d x+z d x d y$ through the disk $\{(\rho \cos \theta, \rho \sin \theta, 2): 0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi\}$.
(d) $\iiint\left(x^{2}+y^{2}\right) d x d y d z$ over the solid cylinder

$$
\{(\rho \cos \theta, \rho \sin \theta, z): 0 \leq \rho \leq 1,0 \leq \theta \leq 2 \pi,-2 \leq z \leq 2\}
$$

3. (16 pts.) True/false questions. Circle your choice. Justification is not necessary.

In this question all functions are differentiable on \mathbf{R}^{3}.
Lowercase functions are $\mathbf{R}^{3} \rightarrow \mathbf{R}$ and uppercase functions are $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$.
T F (a) The integral of $d f$ around any circle is 0 .
T F (b) The flux of the curl $\nabla \times F$ through a sphere is 0 .
T F (c) The integral of divergence $\nabla \cdot F$ over a ball is 0 .
T F (d) If $\nabla \times F=0$, then F is a gradient, i.e. $F=\nabla f$ for some f.
T F (e) If $d f=0$, then $f=0$.
T F (f) $\nabla \times(\nabla f)=0$
T F (g) $\nabla(\nabla \cdot F)=0$
T F (h) $\nabla \cdot(\nabla \times F)=0$

1	2a	2b	2c	2d	3	total (72)	$\%$

