Calculus for Applications, MAT 3243 Midterm, October 18, 1995 Instructor: D. Gokhman

Name: ____

Show all work. Answers alone are not sufficient.

- 1. (30 pts.) Find parametric formulas (x(t), y(t)) for the following curves in \mathbb{R}^2 (remember to specify the range of the parameter t):
 - (a) The line segment from (-1, 2) to (5, -3).
 - (b) The circle of radius 5 centered at (-2, -1).
 - (c) The graph of $y = x^3$.
- 2. (40 pts.) Let $f: \mathbf{R}^2 \to \mathbf{R}$ be the projection to the diagonal, i.e. $f(x, y) = (x+y)/\sqrt{2}$, and let $g: \mathbf{R}^2 \to \mathbf{R}^2$ be the transformation from polar to cartesian coordinates, i.e. $g(r, \theta) = (r \cos \theta, r \sin \theta)$.
 - (a) Find $h = f \circ g$ the composition of f and g: $h(r, \theta) = f(g(r, \theta))$.
 - (b) Find the derivative matrices D(f), D(g), D(h).
- 3. (60 pts.) Let $f(x, y) = 4x^2 + y^2$.
 - (a) In the x-y plane sketch the level curves of the graph z = f(x, y) at heights c = 0, 1, 4.
 - (b) Find ∇f at p = (-1/2, 0) and sketch it. Is it perpendicular to the level curve passing through p?
 - (c) Find the directional derivative of f along (1, -1) at p.
 - (d) Extra credit: sketch the graph of z = f(x, y).
- 4. (40 pts.) Integrate $x \, dx y \, dy$ around the unit circle $(\cos(t), \sin(t)), 0 \le t < 2\pi$

1	2	3	4	total (170)