Calculus for Applic ations, MAT 3243
Midterm, October 18, 1995
Instructor: D. Gokhman

Name:
Show all work. Answers alone are not sufficient.

1. (30 pts .) Find parametric formulas $(x(t), y(t))$ for the following curves in \mathbf{R}^{2} (remember to specify the range of the parameter t):
(a) The line segment from $(-1,2)$ to $(5,-3)$.
(b) The circle of radius 5 centered at $(-2,-1)$.
(c) The graph of $y=x^{3}$.
2. (40 pts.) Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be the projection to the diagonal, i.e. $f(x, y)=(x+y) / \sqrt{2}$, and let $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the transformation from polar to cartesian coordinates, i.e. $g(r, \theta)=(r \cos \theta, r \sin \theta)$.
(a) Find $h=f \circ g$ - the composition of f and $g: h(r, \theta)=f(g(r, \theta))$.
(b) Find the derivative matrices $D(f), D(g), D(h)$.
3. (60 pts.) Let $f(x, y)=4 x^{2}+y^{2}$.
(a) In the $x-y$ plane sketch the level curves of the graph $z=f(x, y)$ at heights $c=0,1,4$.
(b) Find ∇f at $p=(-1 / 2,0)$ and sketch it. Is it perpendicular to the level curve passing through p ?
(c) Find the directional derivative of f along $(1,-1)$ at p.
(d) Extra credit: sketch the graph of $z=f(x, y)$.
4. (40 pts.) Integrate $x d x-y d y$ around the unit circle $(\cos (t), \sin (t)), 0 \leq t<2 \pi$

1	2	3	4	total (170)

