Calculus for Applications, MAT 3243 Final, December 12, 1995 Instructor: D. Gokhman

Name: ______ Pseudonym: ______ Show all work. Answers alone are not sufficient. 1. (40 pts.) Let $\omega = e^x y^3 z \, dx + 3e^x y^2 z \, dy + e^x y^3 \, dz$ (a) Show that $d\omega = 0$ (i.e. $\operatorname{curl}(e^x y^3 z, 3e^x y^2 z, e^x y^3) = 0$). (b) Find f(x, y, z) such that $df = \omega$ (i.e. $\operatorname{grad} f = (e^x y^3 z, 3e^x y^2 z, e^x y^3)$). [Hint: guess/check or integrate along a straight line $(0, 0, 0) \to (x, y, z)$] (c) Evaluate $\int_{(1,2,-2)}^{(0,-1,2)} \omega = \int_{(1,2,-2)}^{(0,-1,2)} e^x y^3 z \, dx + 3e^x y^2 z \, dy + e^x y^3 \, dz$ [Hint: you may use part (b) and the Fundamental Theorem of Calculus.] (d) What is the integral of ω around a closed curve? Explain. 2. (40 pts.) Let F(x, y, z) = (3x, 3y, -7z). Find the flux $\int F \cdot dS$ through: (a) the cylinder $\Phi(\theta, z) = (2 \cos \theta, 2 \sin \theta, z), 0 \le \theta < 2\pi, -5 \le z \le 5$ (b) the disc $\Phi(\rho, \theta) = (\rho \cos \theta, \rho \sin \theta, 5), 0 \le \rho \le 2, 0 \le \theta < 2\pi$ 3. (40 pts.) Evaluate the following integrals:

- (a) $\int_{S} 2xy^{3}z \, dx + 3x^{2}y^{2}z \, dy + x^{2}y^{3} \, dz$, where S is the unit circle in the x-y plane $(S = \{(x, y, z): x^{2} + y^{2} = 1, z = 0\}).$
- (b) $\int_D e^y z \, dy \, dz 5x^z \, dz \, dx + \log(xy) \, dx \, dy$, where *D* is the unit sphere $(D = \{(x, y, z): x^2 + y^2 + z^2 = 1\}).$

[Hint: S and D are boundaries.]

1a	1b	1c	1d	2a	2b	3a	3b	total (120)