Name: .

- 1. (40 pts.) Find matrices that represent the following linear maps $f: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the standard basis for \mathbb{R}^3 :
 - (a) projection to the x-z plane,
 - (b) reflection with respect to the x-z plane,
 - (c) rotation by π around the y axis clockwise if you look from the positive y direction,
 - (d) projection to the line $\ell(t) = t(1, 1, 1)$.
- 2. (40 pts.) Find the determinants and inverses of the following matrices:

	(0	1	1	(b)	(3	2	1
(a)	1	0	1	(b)	0	3	2
	$ \left(\begin{array}{c} 0\\ 1\\ 1 \end{array}\right) $	1	0 /		0	0	3 /

- 3. (30 pts.) Find parametric formulas for the following curves in \mathbb{R}^2 :
 - (a) The line through (-1, 2) and (5, -3).
 - (b) The circle of radius 5 centered at (-1, -1).
 - (c) The parabola $x = y^2$.
- 4. (40 pts.) Suppose that the position of a particle in \mathbf{R}^2 as a function of time $t \ge 0$ is given by $r(t) = (t \cos(2\pi t), t \sin(2\pi t))$.
 - (a) Sketch the trajectory of the particle.
 - (b) Find the velocity as a function of t.
 - (c) Find the speed as a function of t (simplify!).
 - (d) Find a parametric formula for the line tangent to the trajectory at the point r(1).

A useful formula: Projection of u to the line through the origin spanned by $v \neq 0$ is $\frac{u \cdot v}{||v||^2}v$.

1	2	3	4	total (150)