C alculus for Applic ations, mat 3243
 Midterm, Oc tober 19, 1994
 Instructor: D. Gokhman

Name:

1. (40 pts.) Find matrices that represent the following linear maps $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ with respect to the standard basis for \mathbf{R}^{3} :
(a) projection to the $x-z$ plane,
(b) reflection with respect to the $x-z$ plane,
(c) rotation by π around the y axis clockwise if you look from the positive y direction,
(d) projection to the line $\ell(t)=t(1,1,1)$.
2. (40 pts .) Find the determinants and inverses of the following matrices:
(a) $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3\end{array}\right)$
3. (30 pts.) Find parametric formulas for the following curves in \mathbf{R}^{2} :
(a) The line through $(-1,2)$ and $(5,-3)$.
(b) The circle of radius 5 centered at $(-1,-1)$.
(c) The parabola $x=y^{2}$.
4. (40 pts.) Suppose that the position of a particle in \mathbf{R}^{2} as a function of time $t \geq 0$ is given by $r(t)=(t \cos (2 \pi t), t \sin (2 \pi t))$.
(a) Sketch the trajectory of the particle.
(b) Find the velocity as a function of t.
(c) Find the speed as a function of t (simplify!).
(d) Find a parametric formula for the line tangent to the trajectory at the point $r(1)$.

A useful formula :

Projection of u to the line through the origin spanned by $v \neq 0$ is $\frac{u \cdot v}{\|v\|^{2}} v$.

1	2	3	4	$\operatorname{total}(150)$

