Calculus for Applic ations, mat 3243
Final, December 13, 1994
Instructor: D. Gokhman
Name: \qquad

1. (20 pts.) INNER PRODUCT
(a) Find two linearly independent vectors perpendicular to $(1,1,1)$.
(b) Find the angle between the diagonal of the unit cube and one of its sides.
2. (20 pts.) Chain rule Let $F(x, y, z)=x+y^{2}, G(t, s)=(x(t, s), y(t, s), z(t, s))=\left(t^{2}-s^{2}, t s, t^{2}+s^{2}\right)$. Find the derivative matrices of F, G and $F \circ G$.
3. (20 pts.) Find the quadratic function of x and y that approximates $f(x, y)=e^{x+y}$ at $\left(x_{0}, y_{0}\right)=(0,0)$.
4. (20 pts.) CONSTRAINED EXTREMA
(a) Sketch the unit circle and four different level curves of $f(x, y)=x+2 y$.
(b) Find the absolute maximum and minimum of $f(x, y)=x+2 y$ on the unit circle.
5. (30 pts.) CURVE INTEGRAL
(a) Find a parametric formula $\boldsymbol{r}(t)=(x(t), y(t))$ for the unit circle.
(b) Sketch the unit circle. On the same graph sketch the vector field $\boldsymbol{F}(x, y)=(x, y)$ at four different points.
(c) Integrate $\boldsymbol{F} \cdot d \boldsymbol{r}$ along the unit circle, where \boldsymbol{F} and \boldsymbol{r} are as in parts (a) and (b).
6. (20 pts.) SURFACE INTEGRAL
(a) Find a parametric formula $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))$ for the surface $x^{2}+y^{2}=1,-1 \leq z \leq 1$. (Hint: you may let $u=\theta$ and $v=z$)
(b) Let $\boldsymbol{F}(x, y, z)=(x, y,-y)$. Integrate $\boldsymbol{F} \cdot d \boldsymbol{S}$ through the surface of part (a).

$$
\begin{aligned}
& \text { Useful formula s: } \quad \boldsymbol{u} \cdot \boldsymbol{v}=|\boldsymbol{u}||\boldsymbol{v}| \cos \theta \quad|\boldsymbol{u} \times \boldsymbol{v}|=|\boldsymbol{u}||\boldsymbol{v}||\sin \theta| \\
& \text { Cylindrical coordinates: }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
r \cos \theta \\
r \sin \theta \\
z
\end{array}\right) \quad \text { Spherical coordinates: }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
r \sin \varphi \cos \theta \\
r \sin \varphi \sin \theta \\
r \cos \varphi
\end{array}\right) \\
& d \boldsymbol{r}=\left(\begin{array}{l}
d x \\
d y \\
d z
\end{array}\right)=\boldsymbol{r}^{\prime}(t) d t, \quad d \boldsymbol{S}=\left(\begin{array}{l}
d y d z \\
d z d x \\
d x d y
\end{array}\right)=\left(\frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v}\right) d u d v
\end{aligned}
$$

1	2	3	4	5	6	total (130)

