Name: _

- 1. (20 pts.) INNER PRODUCT
 - (a) Find two linearly independent vectors perpendicular to (1,1,1).
 - (b) Find the angle between the diagonal of the unit cube and one of its sides.
- 2. (20 pts.) CHAIN RULE Let $F(x, y, z) = x + y^2$, $G(t, s) = (x(t, s), y(t, s), z(t, s)) = (t^2 - s^2, ts, t^2 + s^2)$. Find the derivative matrices of F, G and $F \circ G$.
- 3. (20 pts.) Find the quadratic function of x and y that approximates $f(x, y) = e^{x+y}$ at $(x_0, y_0) = (0, 0)$.
- 4. (20 pts.) constrained extrema
 - (a) Sketch the unit circle and four different level curves of f(x, y) = x + 2y.
 - (b) Find the absolute maximum and minimum of f(x, y) = x + 2y on the unit circle.
- 5. (30 pts.) CURVE INTEGRAL
 - (a) Find a parametric formula $\mathbf{r}(t) = (x(t), y(t))$ for the unit circle.
 - (b) Sketch the unit circle. On the same graph sketch the vector field F(x, y) = (x, y) at four different points.
 - (c) Integrate $\mathbf{F} \cdot d\mathbf{r}$ along the unit circle, where \mathbf{F} and \mathbf{r} are as in parts (a) and (b).
- 6. (20 pts.) SURFACE INTEGRAL
 - (a) Find a parametric formula $\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$ for the surface $x^2 + y^2 = 1, -1 \le z \le 1$. (Hint: you may let $u = \theta$ and v = z)
 - (b) Let F(x, y, z) = (x, y, -y). Integrate $F \cdot dS$ through the surface of part (a).

Useful formulas: $\boldsymbol{u} \cdot \boldsymbol{v} = |\boldsymbol{u}| |\boldsymbol{v}| \cos \theta$ $|\boldsymbol{u} \times \boldsymbol{v}| = |\boldsymbol{u}| |\boldsymbol{v}| |\sin \theta|$ Cylindrical coordinates: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cos \theta \\ r \sin \theta \\ z \end{pmatrix}$ Spherical coordinates: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \varphi \cos \theta \\ r \sin \varphi \sin \theta \\ r \cos \varphi \end{pmatrix}$ $d\boldsymbol{r} = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \boldsymbol{r}'(t) dt, \quad d\boldsymbol{S} = \begin{pmatrix} dy \, dz \\ dz \, dx \\ dx \, dy \end{pmatrix} = \begin{pmatrix} \partial \Phi \\ \partial u \times \partial \Phi \\ \partial v \end{pmatrix} du dv$

1	2	3	4	5	6	total (130)