Name: \qquad
Please show all work and justify your answers.

Assume throughout that R and S are commutative rings with unity.

1. Find all integer solutions x of the linear congruence equation $6 x \equiv 16 \bmod 28$.
2. Show that multiplicative inverses in a ring, when they exist, are unique by proving that if $a, a^{\prime}, a^{\prime \prime} \in R$ with $a a^{\prime}=1$ and $a a^{\prime \prime}=1$, then $a^{\prime}=a^{\prime \prime}$.
3. Suppose $\varphi: R \rightarrow S$ a ring homomorphism. Show directly from the definition that for any unit $x \in R$ we have $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$.
4. Suppose R is a ring, $a \in R$ and $\varphi: R \rightarrow R$ is an additive group homomorphism defined by $\varphi(x)=a x$. Show that φ is one-to-one if and only if a is neither zero nor a zero divisor.

1	2	3	4	total (40)

