Name: _

Please show all work and justify your answers.

Assume throughout that R and S are commutative rings with unity.

- 1. Find all integer solutions x of the linear congruence equation $6x \equiv 16 \mod 28$.
- 2. Show that multiplicative inverses in a ring, when they exist, are unique by proving that if $a, a', a'' \in R$ with aa' = 1 and aa'' = 1, then a' = a''.
- 3. Suppose $\varphi \colon R \to S$ a ring homomorphism. Show directly from the definition that for any unit $x \in R$ we have $\varphi(x^{-1}) = \varphi(x)^{-1}$.
- 4. Suppose R is a ring, $a \in R$ and $\varphi \colon R \to R$ is an additive group homomorphism defined by $\varphi(x) = ax$. Show that φ is one-to-one if and only if a is neither zero nor a zero divisor.

1	2	3	4	total (40)