Name: \qquad

Please show all work.

1. Partition the symmetric group S_{3} by left cosets of the cyclic subgroup $\langle(2,3)\rangle$. Do the same with right cosets.
2. Suppose G, G^{\prime} are commutative multiplicative groups and $\varphi: G \rightarrow G^{\prime}$ is a surjective homomorphism. For y in G^{\prime} express its fibre $\varphi^{-1}(y)=\{x \in G: \varphi(x)=y\}$ as a coset of $\operatorname{ker} \varphi$.
3. Find the solution set for the system of congruences

$$
\begin{gathered}
35 x \equiv 15 \bmod 50 \\
x \equiv-2 \bmod 30
\end{gathered}
$$

4. Use Euclid's algorithm for the polynomial ring $\mathbf{R}[x]$ to find the greatest common divisor and the Bézout coefficients for $x^{2}+3 x+2$ and $x^{4}+x^{3}+3 x+3$.
5. Suppose a is a real number and $\varphi: \mathbf{R}[x] \rightarrow \mathbf{R}$ is the evaluation map $\varphi(p(x))=p(a)$. Prove that φ is a ring homomorphism. What are its kernel and image?

1	2	3	4	5	total (50)	\%
Prelim. course grade:						$\%$

