Midterm 1 / 2011.10.19 / MAT 3233.001 / Modern Algebra

Name: \qquad

Please show all work.

1. Prove by induction that $n!\leq n^{n}$ for all natural numbers n.
2. Use Euclid's algorithm to find the gcd and the Bezout coefficients for 58 and 44.
3. Suppose a, r, m are natural numbers with $a \equiv r \bmod m$. Prove that $\operatorname{gcd}(a, m)=\operatorname{gcd}(r, m)$.

Hint: express r in terms of a and m and show that the two gcd's divide one another.
4. Find all solutions modulo 33 of the linear congruence $15 x \equiv 21 \bmod 33$.
5. Prove that any nonzero element in a finite commutative ring with unity is either a unit or a zero divisor, but not both.

Hint: apply the pigeonhole principle to the sequence of positive integer powers of the element.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade: $\%$						

