Name: _

Please show all work.

- 1. Prove by induction that $n! \leq n^n$ for all natural numbers n.
- 2. Suppose a, r, m are natural numbers with $a \equiv r \mod m$. Prove that gcd(a, m) = gcd(r, m).
- 3. Let m, n be positive integers, m > 1. Prove that the following are equivalent.
 - (i) gcd(m,n) = 1
 - (ii) the congruence class $[n]_m$ is a unit in the ring \mathbf{Z}_m
 - (iii) $[n]_m$ generates the additive group \mathbf{Z}_m
- 4. Let $H = \{(), (1,2)(3,4), (1,3)(2,4), (2,3)(1,4)\} \subset S_4$ (symmetric group).
 - (a) Show that H is a subgroup of S_4 .
 - (b) Is H cyclic? Explain.
 - (c) Partition S_4 with left cosets of H.
- 5. Suppose $\varphi: G \to G'$ is a homomorphism of multiplicative groups.
 - (a) Prove that $\ker \varphi$ is a subgroup of G.
 - (b) Prove that $\varphi(G)$ is a subgroup of G'.
 - (c) Suppose $\varphi(x) = y$. Prove that the fibre $\varphi^{-1}(y)$ is the coset $x \ker \varphi$.
- 6. Find the solution set for the system of congruences

 $15x \equiv 10 \mod 50$

 $x \equiv 9 \operatorname{mod} 15$

- 7. Use Euclid's algorithm for the polynomial ring $\mathbf{R}[x]$ to find the greatest common divisor and the Bézout coefficients for $x^2 - x - 6$ and $x^4 + 2x^3 - x - 2$.
- 8. Suppose $\varphi \colon \mathbf{R}[x] \to \mathbf{R}$ is the evaluation map $\varphi(p(x)) = p(0)$.
 - (a) Prove that φ is a ring homomorphism.
 - (b) Prove that φ is onto.
 - (c) Prove that ker φ is the set of all polynomials with zero constant coefficient.

1	2	3	4	5	6	7	8	total (80)	%