Final exam / 2011.12.12 / MAT 3233.001 / Modern Algebra

Name: \qquad
Please show all work.

1. Prove by induction that $n!\leq n^{n}$ for all natural numbers n.
2. Suppose a, r, m are natural numbers with $a \equiv r \bmod m$. Prove that $\operatorname{gcd}(a, m)=\operatorname{gcd}(r, m)$.
3. Let m, n be positive integers, $m>1$. Prove that the following are equivalent.
(i) $\operatorname{gcd}(m, n)=1$
(ii) the congruence class $[n]_{m}$ is a unit in the ring \mathbf{Z}_{m}
(iii) $[n]_{m}$ generates the additive group \mathbf{Z}_{m}
4. Let $H=\{(),(1,2)(3,4),(1,3)(2,4),(2,3)(1,4)\} \subset S_{4}$ (symmetric group).
(a) Show that H is a subgroup of S_{4}.
(b) Is H cyclic? Explain.
(c) Partition S_{4} with left cosets of H.
5. Suppose $\varphi: G \rightarrow G^{\prime}$ is a homomorphism of multiplicative groups.
(a) Prove that $\operatorname{ker} \varphi$ is a subgroup of G.
(b) Prove that $\varphi(G)$ is a subgroup of G^{\prime}.
(c) Suppose $\varphi(x)=y$. Prove that the fibre $\varphi^{-1}(y)$ is the coset $x \operatorname{ker} \varphi$.
6. Find the solution set for the system of congruences

$$
\begin{aligned}
15 x & \equiv 10 \bmod 50 \\
x & \equiv 9 \bmod 15
\end{aligned}
$$

7. Use Euclid's algorithm for the polynomial ring $\mathbf{R}[x]$ to find the greatest common divisor and the Bézout coefficients for $x^{2}-x-6$ and $x^{4}+2 x^{3}-x-2$.
8. Suppose $\varphi: \mathbf{R}[x] \rightarrow \mathbf{R}$ is the evaluation $\operatorname{map} \varphi(p(x))=p(0)$.
(a) Prove that φ is a ring homomorphism.
(b) Prove that φ is onto.
(c) Prove that $\operatorname{ker} \varphi$ is the set of all polynomials with zero constant coefficient.

1	2	3	4	5	6	7	8	total (80)	$\%$

