Name: _____

Please show all work.

- 1. Partition U_{19} into cosets of $\langle 12 \rangle$.
- 2. If G is a commutative group and H < G, prove that $x, y \in G$ give the same coset of H (i.e. xH = yH) exactly when $xy^{-1} \in H$.
- 3. If $[x]_m \in \mathbf{Z}_m$, show that $\langle x \rangle = \mathbf{Z}_m$ exactly when $[1]_m \in \langle x \rangle$. Then show that this happens exactly when x is coprime to m.

[Hint: Bezout]

4. Find the solution set for the system of congruences

 $8x\equiv 2 \operatorname{mod} 18$

 $9x \equiv 28 \mod 30$

5. Exhibit an injective group homomorphism from U_7 to S_7 .

1	2	3	4	5	total (50)	%

Prelim. course grade: %