Name: \qquad
Please show all work.

1. Partition U_{19} into cosets of $\langle 12\rangle$.
2. If G is a commutative group and $H<G$, prove that $x, y \in G$ give the same coset of H (i.e. $x H=y H$) exactly when $x y^{-1} \in H$.
3. If $[x]_{m} \in \mathbf{Z}_{m}$, show that $\langle x\rangle=\mathbf{Z}_{m}$ exactly when $[1]_{m} \in\langle x\rangle$. Then show that this happens exactly when x is coprime to m.
[Hint: Bezout]
4. Find the solution set for the system of congruences

$$
\begin{aligned}
& 8 x \equiv 2 \bmod 18 \\
& 9 x \equiv 28 \bmod 30
\end{aligned}
$$

5. Exhibit an injective group homomorphism from U_{7} to S_{7}.

1	2	3	4	5	total (50)	$\%$
Prelim. course grade: $\%$						

