Name: _____

Please show all work.

1. Use induction to show that for $n \ge 1$ the partial sum

$$1 + 7 + 13 + \dots + (6n - 5) = \sum_{k=1}^{n} (6k - 5)$$

can be expressed in closed form by $3n^2 - 2n$.

- 2. Use Euclid's algorithm to find (75, 27) and $s, t \in \mathbb{Z}$ such that (75, 27) = 75s + 27t.
- 3. Find all solutions of the linear congruences

(a)
$$3x \equiv 5 \mod 13$$
 (b) $5x \equiv 15 \mod 20$

- 4. Compute 3^{42} modulo 7 by repeated squaring and reduction. Show work.
- 5. Suppose R is a commutative ring (with unity) and let U be the set of all units in R.
 - (a) Prove that U is a multiplicative group.
 - (b) Prove that U cannot contain zero divisors.
 - (c) Describe U for the rings \mathbf{Z}, \mathbf{Z}_m , and \mathbf{C} .

1	2	3	4	5	total (50)	%

Prelim. course grade: %