Name: $\qquad$
Please show all work.

1. Use induction to show that for $n \geq 1$ the partial sum

$$
1+7+13+\ldots+(6 n-5)=\sum_{k=1}^{n}(6 k-5)
$$

can be expressed in closed form by $3 n^{2}-2 n$.
2. Use Euclid's algorithm to find $(75,27)$ and $s, t \in \mathbf{Z}$ such that $(75,27)=75 s+27 t$.
3. Find all solutions of the linear congruences
(a) $3 x \equiv 5 \bmod 13$
(b) $5 x \equiv 15 \bmod 20$
4. Compute $3^{42}$ modulo 7 by repeated squaring and reduction. Show work.
5. Suppose $R$ is a commutative ring (with unity) and let $U$ be the set of all units in $R$.
(a) Prove that $U$ is a multiplicative group.
(b) Prove that $U$ cannot contain zero divisors.
(c) Describe $U$ for the rings $\mathbf{Z}, \mathbf{Z}_{m}$, and $\mathbf{C}$.

| 1 | 2 | 3 | 4 | 5 | total (50) | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| Prelim. course grade: $\%$ |  |  |  |  |  |  |

