Final exam / 2010.12.10 / MAT 3233.001 / Modern Algebra

Name: \qquad
Please show all work.

1. Use induction to show that for $n \geq 1$ the partial sum

$$
1^{3}+2^{3}+\ldots+n^{3}=\sum_{k=1}^{n} k^{3}
$$

can be expressed in closed form by $\left[\frac{n(n+1)}{2}\right]^{2}$
2. Use Euclid's algorithm to find $(48,22)$ and $s, t \in \mathbf{Z}$ such that $(48,22)=48 s+22 t$.
3. Compute 3^{21} modulo 9 by repeated squaring and reduction. Show work.
4. Suppose R is a commutative ring (with unity) and let U be the set of all units in R.
(a) Prove that U is a multiplicative group.
(b) Prove that U cannot contain zero divisors.
(c) Describe U for the ring \mathbf{Z}_{m} and the polynomial ring $\mathbf{R}[x]$.
5. Partition U_{17} into cosets of $\langle 13\rangle$.
6. Consider the set permutations on n elements $\{1,2, \ldots n\}$ (with $n \geq 2$) that keep the element 1 fixed: $H=\left\{\sigma \in S_{n}: \sigma(1)=1\right\}$. Prove that H is a subgroup of S_{n} and express the set of permutations that take 1 to $2: K=\left\{\sigma \in S_{n}: \sigma(1)=2\right\}$ as a coset of H.
7. Prove that among the residues modulo m it is exactly those that are coprime to m that are units in the ring \mathbf{Z}_{m}.
8. Find the solution set for the system of congruences

$$
\begin{aligned}
5 x & \equiv 2 \bmod 48 \\
7 x & \equiv 22 \bmod 30
\end{aligned}
$$

9. Exhibit (with proof) a surjective group homomorphism from the general linear group of invertible linear operators on the real plane under composition (or equivalently, 2×2 nonsingular matrices with real coefficients under matrix multiplication) $\mathrm{GL}_{2}(\mathbf{R})$ to the multiplicative group of nonzero real numbers \mathbf{R}^{*}. What is this homomorphism's kernel?

1	2	3	4	5	6	7	8	9	total (90)	\%

