Name: _____

Please show all work.

- 1. Prove by induction that $n! \leq n^n$ for all $n \geq 1$.
- 2. Compute 5^{23} modulo 7 by repeated squaring and reduction. Show work.
- 3. Solve the linear congruence $20x \equiv 5 \mod 23$.
- 4. Solve the system of congruences $x \equiv 3 \mod 4$, $x \equiv 4 \mod 5$, $x \equiv 5 \mod 6$.
- 5. Find the gcd of $x^3 + 1$ and $x^5 + 1$ in $\mathbf{Q}[x]$. What is the corresponding Bezout relation?
- 6. If a, b, q, r are natural numbers such that b = aq + r, prove that gcd(a, b) = gcd(a, r).
- 7. Prove that any nonzero element in a finite commutative ring is either a unit or a zero divisor.
- 8. Prove that U_4 is cyclic, but the symmetric group S_3 is not.
- 9. Construct an injective group homomorphism from U_4 to S_3 . Verify that the function you have constructed is indeed a group homomorphism.
- 10. Let G be the abelian group $\mathbf{Z} \times \mathbf{Z}$ (the integer lattice in the plane). Sketch the subgroup of G generated by (1,2). Sketch one nontrivial coset of this subgroup.

1	2	3	4	5	6	7	8	9	10	total (100)