Name: \qquad
Please show all work.

1. Prove by induction that $n!\leq n^{n}$ for all $n \geq 1$.
2. Compute 5^{23} modulo 7 by repeated squaring and reduction. Show work.
3. Solve the linear congruence $20 x \equiv 5 \bmod 23$.
4. Solve the system of congruences $x \equiv 3 \bmod 4, x \equiv 4 \bmod 5, x \equiv 5 \bmod 6$.
5. Find the gcd of $x^{3}+1$ and $x^{5}+1$ in $\mathbf{Q}[x]$. What is the corresponding Bezout relation?
6. If a, b, q, r are natural numbers such that $b=a q+r$, prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r)$.
7. Prove that any nonzero element in a finite commutative ring is either a unit or a zero divisor.
8. Prove that U_{4} is cyclic, but the symmetric group S_{3} is not.
9. Construct an injective group homomorphism from U_{4} to S_{3}. Verify that the function you have constructed is indeed a group homomorphism.
10. Let G be the abelian group $\mathbf{Z} \times \mathbf{Z}$ (the integer lattice in the plane). Sketch the subgroup of G generated by (1,2). Sketch one nontrivial coset of this subgroup.

1	2	3	4	5	6	7	8	9	10	total (100)

