Name: \qquad

1. (10 pts.) Find all roots of $z e^{4 i z}+2 z+z e^{-4 i z}$ inside the unit disc and determine their multiplicity.
2. (10 pts.) Show that all 4 roots of $z^{4}+z^{2}-z-5$ are located in the annulus $\{z: 1 \leq z \leq 2\}$.
3. (20 pts.) Evaluate the following integrals along the given paths (sketch):
(a) $\int_{\gamma} \frac{d z}{z^{3}+2 z^{2}}$, where γ is the unit circle
(b) $\int_{\gamma} \bar{z} d z$, where γ is the straight line segment from i to -1
(c) $\int_{\gamma} \bar{z} d z$, where $\gamma=\{z:|z-1+i|=1\}$
(d) $\int_{\gamma} \frac{z d z}{z^{2}+i}$, where $\gamma=\{z:|z-1+i|=1\}$
4. (10 pts.) Let $I(r)=\int_{\gamma} \frac{1}{z^{2}+1} d z$, where $\gamma=\left\{r e^{i t}: 0 \leq t \leq \pi\right\}$ with $r>1$.

Estimate $|I(r)|$ and show that $I(r) \rightarrow 0$ as $r \rightarrow \infty$.

1	2	3	4	total (50)	$\%$

