Name: _

- 1. (10 pts.) Find all roots of $ze^{4iz} + 2z + ze^{-4iz}$ inside the unit disc and determine their multiplicity.
- 2. (10 pts.) Show that all 4 roots of $z^4 + z^2 z 5$ are located in the annulus $\{z : 1 \le z \le 2\}$.
- 3. (20 pts.) Evaluate the following integrals along the given paths (sketch):
 - (a) $\int_{\gamma} \frac{dz}{z^3 + 2z^2}$, where γ is the unit circle (b) $\int_{\gamma} \overline{z} dz$, where γ is the straight line segment from i to -1(c) $\int_{\gamma} \overline{z} dz$, where $\gamma = \{z: |z - 1 + i| = 1\}$ (d) $\int_{\gamma} \frac{z dz}{z^2 + i}$, where $\gamma = \{z: |z - 1 + i| = 1\}$
- 4. (10 pts.) Let $I(r) = \int_{\gamma} \frac{1}{z^2 + 1} dz$, where $\gamma = \{re^{it} : 0 \le t \le \pi\}$ with r > 1.

Estimate |I(r)| and show that $I(r) \to 0$ as $r \to \infty$.

1	2	3	4	total (50)	%