Complex Va ria bles/ MAT3223.001
Midterm 2 / April 26, 2000 / Instructor: D. Gokhman

Name: \qquad

1. (10 pts.) Find all roots of f in the unit disc and determine their multiplicity.
(a) $f(z)=\sin (2 z)-1$
(b) $f(z)=e^{4 z}+1$
2. (10 pts.) Integrate $f(z) d z$ along the straight line segment from $1-i$ to i.
(a) $f(z)=\operatorname{Im} z$
(b) $f(z)=\bar{z} z$
3. (20 pts.) Integrate around the unit circle once counterclockwise.
(a) $\int \frac{d z}{i+2 z}$
(b) $\int \frac{d z}{z^{3}+2 z^{2}}$
(c) $\int \frac{\exp \left(z^{2}\right)}{z^{7}} d z$
(d) $\int \frac{d z}{z \sin z}$
4. (10 pts.) Show that all three roots of $p(z)=z^{3}+z-3$ lie in the annulus $1<|z|<2$.

1	2	3	4	total (50)	$\%$

