Complex Variables / MAT 3223.001 Midterm 2 / April 26, 2000 / Instructor: D. Gokhman

Name: _

- 1. (10 pts.) Find all roots of f in the unit disc and determine their multiplicity.
 - (a) $f(z) = \sin(2z) 1$
 - (b) $f(z) = e^{4z} + 1$
- 2. (10 pts.) Integrate f(z) dz along the straight line segment from 1 i to i.
 - (a) $f(z) = \operatorname{Im} z$
 - (b) $f(z) = \overline{z}z$
- 3. (20 pts.) Integrate around the unit circle once counterclockwise.

(a)
$$\int \frac{dz}{i+2z}$$
 (b) $\int \frac{dz}{z^3+2z^2}$ (c) $\int \frac{\exp(z^2)}{z^7} dz$ (d) $\int \frac{dz}{z\sin z}$

4. (10 pts.) Show that all three roots of $p(z) = z^3 + z - 3$ lie in the annulus 1 < |z| < 2.

1	2	3	4	total (50)	%