Complex Variables / MAT 3223.001 Midterm 1 / Mar. 1, 2000 / Instructor: D. Gokhman

1. (10 pts.) Sketch the locus of each of the following equations in the complex plane.

(a)
$$|z - 1 + i| = |z + 1 + i|$$
 (b) $\arg\left(\frac{z - i}{z - 1}\right) = \pi/2$

2. (10 pts.) Let $f(z) = e^z$. Parametrize and sketch each of the following lines. Then find and sketch their image under f.

(a)
$$\operatorname{Re} z = 1$$
 (b) $\operatorname{Im} z = -1$

3. (20 pts.) Find the Taylor series expansion of each of the following functions at the given center c. In each case determine and sketch the disc of convergence.

(a)
$$\frac{1}{1+3z}$$
, $c = 0$ (b) $\frac{1}{1-z}$, $c = 2$ (c) $\log(z)$, $c = 1$ (d) $\frac{z^5}{e^{z^2}}$, $c = 0$

- 4. (20 pts.) Consider $f: \mathbf{C} \rightarrow \mathbf{C}$.
 - (a) Suppose f is a global expansion by a factor of 12 composed with a clockwise rotation by $\pi/4$. Write down a formula for f(z).
 - (b) Suppose $f(z) = 2i \log(z)$. Describe geometrically the local behaviour of f in the vicinity of z = 1 + i.
- 5. (20 pts.) Find all points in the complex plane, where each of the following functions of z = x + iy is complex differentiable.

In each case, where the function is complex differentiable, find the derivative.

(a)
$$x^2 + iy^2$$
 (b) $x^2 + y^2 + 2ixy$

1	2	3	4	5	total (80)	%