Name: ______ Pseudonym: _____

1. (10 pts.) Sketch the locus of each of the following equations in the complex plane.

(a) |z - i| = |z + 1| (b) $\arg(z - i) = -\pi/4$

2. (10 pts.) Let $f(z) = e^z$. Parametrize and sketch each of the following lines. Then find and sketch their image under f.

(a)
$$\operatorname{Re} z = -2$$
 (b) $\operatorname{Im} z = 2$

3. (20 pts.) Find the Taylor series expansion of each of the following functions at the given center c. In each case determine and sketch the disc of convergence.

(a)
$$\frac{1}{3+z}$$
, $c = 0$ (b) $\frac{1}{3+z}$, $c = 1$ (c) $\log(z)$, $c = 2$ (d) $\frac{z^7}{e^{z^3}}$, $c = 0$

- 4. (10 pts.) Consider $f: \mathbf{C} \rightarrow \mathbf{C}$.
 - (a) Suppose $f(z) = -i \log(z)$. Describe geometrically the local behaviour of f in the vicinity of z = 1 i.
 - (b) Suppose f is a global expansion by a factor of 1/2 composed with a clockwise rotation by $\pi/2$. Write down a formula for f(z).
- 5. (10 pts.) Find all points in the complex plane, where each of the following functions of z = x + iy is complex differentiable.

In each case, at the points where the function is complex differentiable, find the derivative.

(a)
$$\frac{1}{x - iy}$$
 (b) $e^{-y} (\cos x + i \sin x)$

6. (10 pts.) Find all roots of f in the unit disc and determine their multiplicity.

(a)
$$f(z) = \cos(4z) + 1$$
 (b) $f(z) = e^{4z} + i$

7. (10 pts.) Integrate f(z) dz along the straight line segment from i - 1 to 1.

(a)
$$f(z) = \operatorname{Im} z$$
 (b) $f(z) = \overline{z}z$

8. (20 pts.) Integrate around the unit circle once counterclockwise.

(a)
$$\int \frac{dz}{i-2z}$$
 (b) $\int \frac{dz}{z^3-2z^2}$ (c) $\int \frac{\cos(z^2)}{z^7} dz$ (d) $\int \frac{dz}{z\cos z-z}$

9. (10 pts.) Show that all three roots of $p(z) = z^3 - z - 4$ lie in the annulus 1 < |z| < 2.

1	2	3	4	5	6	7	8	9	total (110)	%