Complex Va ria bles/ MAT3223.001

Final exam / May 11, 2000 / Instructor. D. Gokhman

Name: \qquad Pseudonym: \qquad

1. (10 pts.) Sketch the locus of each of the following equations in the complex plane.

$$
\text { (a) }|z-i|=|z+1| \quad \text { (b) } \arg (z-i)=-\pi / 4
$$

2. (10 pts.) Let $f(z)=e^{z}$. Parametrize and sketch each of the following lines.

Then find and sketch their image under f.
(a) $\operatorname{Re} z=-2$
(b) $\operatorname{Im} z=2$
3. (20 pts.) Find the Taylor series expansion of each of the following functions at the given center c. In each case determine and sketch the disc of convergence.
(a) $\frac{1}{3+z}, c=0$
(b) $\frac{1}{3+z}, c=1$
(c) $\log (z), c=2$
(d) $\frac{z^{7}}{e^{z^{3}}}, c=0$
4. (10 pts.) Consider $f: \mathbf{C} \rightarrow \mathbf{C}$.
(a) Suppose $f(z)=-i \log (z)$. Describe geometrically the local behaviour of f in the vicinity of $z=1-i$.
(b) Suppose f is a global expansion by a factor of $1 / 2$ composed with a clockwise rotation by $\pi / 2$. Write down a formula for $f(z)$.
5. (10 pts .) Find all points in the complex plane, where each of the following functions of $z=x+i y$ is complex differentiable.
In each case, at the points where the function is complex differentiable, find the derivative.

$$
\begin{array}{ll}
\text { (a) } \frac{1}{x-i y} & \text { (b) } e^{-y}(\cos x+i \sin x)
\end{array}
$$

6. (10 pts .) Find all roots of f in the unit disc and determine their multiplicity.
(a) $f(z)=\cos (4 z)+1$
(b) $f(z)=e^{4 z}+i$
7. (10 pts.) Integrate $f(z) d z$ along the straight line segment from $i-1$ to 1 .
(a) $f(z)=\operatorname{Im} z$
(b) $f(z)=\bar{z} z$
8. (20 pts .) Integrate around the unit circle once counterclockwise.
(a) $\int \frac{d z}{i-2 z}$
(b) $\int \frac{d z}{z^{3}-2 z^{2}}$
(c) $\int \frac{\cos \left(z^{2}\right)}{z^{7}} d z$
(d) $\int \frac{d z}{z \cos z-z}$
9. (10 pts.) Show that all three roots of $p(z)=z^{3}-z-4$ lie in the annulus $1<|z|<2$.

1	2	3	4	5	6	7	8	9	$\operatorname{total}(110)$	$\%$

