Complex Va ria bles/ MAT3223.001

Midterm 1 / February 23, 1998 / Instructor: D. Gokhman

Name:

Please show all work and box the answers, where appropriate.

1. (10 pts.) Sketch the following subsets of the complex plane.
(a) $\{z:|z+i|=|z-1-i|\}$
(b) $\{z:|z+i|=2\}$
2. (10 pts.) Let $f(z)=\frac{z+i}{z-i}$. Find and sketch:
(a) $f^{-1}(\{w:|w|=1\})$
(b) $f(\{z: \operatorname{Re} z=0\})$
3. (20 pts.)
(a) Show that if z is a solution of $z^{n}=a$ and z_{0} is a solution of $z^{n}=1$, then $z_{0} z$ is a solution of $z^{n}=a$.
(b) Find all solutions of $z^{3}=1$.
(c) Find a solution of $z^{3}=8 i$. (Hint: Express $8 i$ in polar form.)
(d) Find all solutions of $z^{3}=8 i$ and express them in polar and cartesian form. (Hint: You may use ($\mathrm{a}-\mathrm{c}$).)
(e) Check your answers to part (d).
4. (20 pts.) Find the Maclaurin series expansion of each of the following functions and determine its radius of convergence.
(a) $\frac{1}{1+2 z}$
(b) $\frac{1}{i+z}$
5. (14 pts.) Mix'n'match.
\qquad
(a) $f(z)=z$
(i) translation
(b) $f(z)=-z$
(ii) isotropic expansion/contraction
(c) $f(z)=\bar{z}$
(iii) rotation
(d) $f(z)=-\bar{z}$
(iv) identity
(e) $f(z)=e^{i \theta} z$
(v) reflection with respect to the x axis
(f) $f(z)=a+z$
(vi) reflection with respect to the y axis
_- (g) $f(z)=r z$
(vii) reflection with respect to the origin
\qquad

1	2	3	4	5	total (74)	$\%$

