Complex Va ria bles/ MAT3223.001

Final / May 8, 1998 / Instructor: D. Gokhman

Name: \qquad Pseud onym:
Please show all work and box the answers, where appropriate.

1. (20 pts.) Find all solutions of $z^{3}=-8$, express them in polar and cartesian form, and sketch them.
2. (10 pts.) Find all values of $\log i$ and sketch a few of them.
3. (30 pts .) Find the Maclaurin series expansion of each of the following functions and determine its radius of convergence.
(a) $\frac{1}{1-3 z}$
(b) $\frac{1}{i-z}$
4. (20 pts.) Find all branch points of $f(z)=\sqrt{1+z^{4}}$. What is the smallest number of branch cuts needed to make f single valued? Sketch the branch points and an example of branch cuts as above. What is the radius of convergence of the Taylor series expansion of f at 1 ?
5. (20 pts.) Find all points in the complex plane, where each of the following functions of $z=x+i y$ is analytic? complex differentiable?

$$
\begin{array}{ll}
\text { (a) } e^{y}(\sin x+i \cos x) & \text { (b) } x^{2}+y^{2}
\end{array}
$$

6. (40 pts.) Evaluate integrals (a) and (b) around the unit circle, and integrals (c) and (d) along the straight line segment from $-i$ to $1+i$.
(a) $\int \frac{d z}{z^{2}-3 z}$
(b) $\int \frac{d z}{z^{4}-3 z^{3}}$
(c) $\int|z|^{2} d z$
(d) $\int \bar{z} d z$
7. $(20$ pts. $)$ Let $p(z)=z^{5}+4 z^{2}-1$.
(a) Show that all five zeros of p lie in the disc $|z|<2$.
(b) Show that exactly two zeros of p lie in the unit disc.

1	2	3	4	5	6	7	total (160)	$\%$

