Complex Variables, MAT 3223 Final, May 11, 1994 Instructor: D. Gokhman

Name: _

1. (40 pts.) Express the following quantities in terms of $x = \operatorname{Re} z, y = \operatorname{Im} z, r = |z|, \theta = \arg z$

> (a) $|e^z|$ (b) $\arg e^z$ (c) Re $\log z$ (d) Im $\log z$

2. (30 pts.) For each of the following functions f(z) find the largest subset of the complex plane, where f(z) is differentiable.

(a)
$$f(z) = 1/(z^4 - 8iz)$$
 (b) $f(z) = |z|^2$ (c) $f(z) = \frac{|z|^2}{\overline{z}}$

- 3. (40 pts.) Mix'n'match.
 - (a) f(z) = z (i) translation (b) f(z) = -z (ii) scale

 - (c) $f(z) = \overline{z}$ (iii) rotation
 - (d) $f(z) = -\overline{z}$ (iv) identity
 - (e) $f(z) = 1/\overline{z}$ (v) reflection with respect to the x axis
 - (f) $f(z) = e^{\vec{i}\theta}z$ (vi) reflection with respect to the y axis
 - (g) $f(z) = z_0 + z$ (vii) reflection with respect to the origin
 - (viii) inversion with respect to the unit circle (h) f(z) = rz
- 4. (30 pts.) Sketch the sector $\{z \in \mathbb{C}: |z| \le 1, \pi/4 \le \arg z \le \pi/2\}$ and its images under the mappings defined in 3c, 3e, 3f with $\theta = \pi/2$, and $f(z) = \vec{i}/z$.
- 5. (80 pts.) Integrate the following functions along the indicated contours. Assume that closed contours are traversed once in the positive direction.
 - (a) q(z) = 1/z along the top half of the unit circle counterclockwise
 - (b) g(z) = Im z along the line segment from 0 to $1 + \vec{i}$
 - (c) $g(z) = 1/(z^3 + 4z)$ around the circle of radius 2 centered at $-3\vec{i}$
 - (d) $g(z) = 1/(z^3 + 2z^2)$ around the unit circle

1	2	3	4	5	6	7	8	total (330)

- 6. (20 pts.) Find the Taylor series for $\log z$ at 1. What is the radius of convergence?
- 7. (60 pts.) Find the Laurent series in powers of z for the following functions with the indicated regions of validity:
 - (a) $ze^{1/z}$ for all $z \neq 0$
 - (b) 1/(1+z) for |z| > 1
 - (c) 1/[(1+z)(2+z)] for 1 < |z| < 2
- 8. (30 pts.) True / false.

Assume that f(z) is differentiable on a connected open set $U \subseteq \mathbf{C}$.

- T F (a) f(z) has a second derivative on U.
- T F (b) The integral of f(z) along any closed contour in U is 0.
- T F (c) If $0 \in U$, the Maclaurin series of f(z) converges to f(z) on an open disk centered at 0.
- T F (d) If |f(z)| is constant on U, then so is f(z).
- T F (e) If |f(z)| attains its maximum at $z \in U$, then f(z) is constant on U.
- T F (f) If f(z) is not constant, then there exists z such that f(z) = 0.