Complex Variables, mat 3223

Final, May 11,1994
Instructor: D. Gokhman

Name: \qquad

1. (40 pts.) Express the following quantities in terms of $x=\operatorname{Re} z, y=\operatorname{Im} z, r=|z|, \theta=\arg z$:
(a) $\left|e^{z}\right|$
(b) $\arg e^{z}$
(c) $\operatorname{Re} \log z$
(d) $\operatorname{Im} \log z$
2. (30 pts.) For each of the following functions $f(z)$ find the largest subset of the complex plane, where $f(z)$ is differentiable.
(a) $f(z)=1 /\left(z^{4}-8 i z\right)$
(b) $f(z)=|z|^{2}$
(c) $f(z)=\frac{|z|^{2}}{\bar{z}}$
3. (40 pts.) Mix'n'match.

-

(a) $f(z)=z$
(i) translation
-
(b) $f(z)=-z$
(ii) scale

- (c) $f(z)=\bar{z}$
(iii) rotation
-

(d) $f(z)=-\bar{z}$
(iv) identity
-
(e) $f(z)=1 / \bar{z}$
(v) reflection with respect to the x axis

- (f) $f(z)=e^{\vec{i} \theta} z$
(vi) reflection with respect to the y axis
- (g) $f(z)=z_{0}+z$
(vii) reflection with respect to the origin
-

(h) $f(z)=r z$
(viii) inversion with respect to the unit circle
4. (30 pts.) Sketch the sector $\{z \in \mathbf{C}:|z| \leq 1, \pi / 4 \leq \arg z \leq \pi / 2\}$ and its images under the mappings defined in 3c, 3e, 3f with $\theta=\pi / 2$, and $f(z)=\vec{i} / z$.
5. (80 pts.) Integrate the following functions along the indicated contours. Assume that closed contours are traversed once in the positive direction.
(a) $g(z)=1 / z$ along the top half of the unit circle counterclockwise
(b) $g(z)=\operatorname{Im} z$ along the line segment from 0 to $1+\vec{i}$
(c) $g(z)=1 /\left(z^{3}+4 z\right)$ around the circle of radius 2 centered at $-3 \vec{i}$
(d) $g(z)=1 /\left(z^{3}+2 z^{2}\right)$ around the unit circle

1	2	3	4	5	6	7	8	total (330)

6. (20 pts.) Find the Taylor series for $\log z$ at 1 . What is the radius of convergence?
7. (60 pts.) Find the Laurent series in powers of z for the following functions with the indicated regions of validity:
(a) $z e^{1 / z}$ for all $z \neq 0$
(b) $1 /(1+z)$ for $|z|>1$
(c) $1 /[(1+z)(2+z)]$ for $1<|z|<2$
8. (30 pts.) True / false.

Assume that $f(z)$ is differentiable on a connected open set $U \subseteq \mathbf{C}$.
T F (a) $f(z)$ has a second derivative on U.
T F (b) The integral of $f(z)$ along any closed contour in U is 0 .
T F (c) If $0 \in U$, the Maclaurin series of $f(z)$ converges to $f(z)$ on an open disk centered at 0 .

T F (d) If $|f(z)|$ is constant on U, then so is $f(z)$.
T F (e) If $|f(z)|$ attains its maximum at $z \in U$, then $f(z)$ is constant on U.
T F (f) If $f(z)$ is not constant, then there exists z such that $f(z)=0$.

