University of Texas at San Antonio

Complex Variables, MAT 3223 Exam $\mathcal{N}^{\underline{O}}2$, 4/13/92 Instructor: D. Gokhman

Name: _____

You may use any theorem that has a name attached to it.

- 1. (30 pts.) For the following functions f(z) and contours Γ , sketch Γ and calculate the contour integral of f(z) along Γ :
 - (a) $f(z) = (\overline{z})^2$, Γ is part of $y = x^2$ from (0,0) to (1,1).
 - (b) $f(z) = \operatorname{Im} z$, Γ is |z| = 1 (clockwise).
- 2. (28 pts.) For the following functions f(z) and closed contours Γ , sketch Γ and use the Cauchy Integral Formula to calculate the contour integral of f(z) counterclockwise along Γ :

(a)
$$f(z) = z (z^2 - 1)^{-1}$$
, Γ is $|z - \pi| = 1$.
(b) $f(z) = z^{-3} \cos z$, Γ is $|z + 2i| = 1$.

- 3. (42 pts.) Prove the following propositions:
 - (a) If the contour integral of f(z) along any closed curve in **C** equals zero, then any integral of f(z) is path independent.
 - (b) If f(z) is entire, then so is f'(z).
 - (c) If p(z) is a polynomial of degree ≥ 1 , then $f(z) = p(z)^{-1}$ is not entire. Where is f(z) differentiable?