University of Texas at San Antonio

Complex Variables, mat 3223
$\operatorname{Exam} \mathcal{N}^{0} 2,4 / 13 / 92$
Instructor: D. Gokhman

Name:
You may use any theorem that has a name attached to it.

1. (30 pts.) For the following functions $f(z)$ and contours Γ, sketch Γ and calculate the contour integral of $f(z)$ along Γ :
(a) $f(z)=(\bar{z})^{2}, \quad \Gamma$ is part of $y=x^{2}$ from $(0,0)$ to $(1,1)$.
(b) $f(z)=\operatorname{Im} z, \quad \Gamma$ is $|z|=1$ (clockwise).
2. (28 pts.) For the following functions $f(z)$ and closed contours Γ, sketch Γ and use the Cauchy Integral Formula to calculate the contour integral of $f(z)$ counterclockwise along Γ :
(a) $f(z)=z\left(z^{2}-1\right)^{-1}, \quad \Gamma$ is $|z-\pi|=1$.
(b) $f(z)=z^{-3} \cos z, \quad \Gamma$ is $|z+2 i|=1$.
3. (42 pts.) Prove the following propositions:
(a) If the contour integral of $f(z)$ along any closed curve in \mathbf{C} equals zero, then any integral of $f(z)$ is path independent.
(b) If $f(z)$ is entire, then so is $f^{\prime}(z)$.
(c) If $p(z)$ is a polynomial of degree ≥ 1, then $f(z)=p(z)^{-1}$ is not entire. Where is $f(z)$ differentiable?
