University of Texas at San Antonio

Complex Variables, mat 3223
Exam $\mathcal{N}^{\underline{0}} 1,3 / 4 / 92$
Instructor: D. Gokhman

Name:

1. (25 pts.) For the following functions $f: D \rightarrow \mathbf{C}$ find the largest domain $D \subseteq \mathbf{C}$ where f is differentiable. Verify the Cauchy-Riemann equations for f on D in part (a) only.
(a) $f(z)=1 /\left(z^{2}+1\right)$
(b) $f(z)=1 /\left(z^{6}-5 i z\right)$.
2. (20 pts.) For each of the following sets $S \in \mathbf{C}$
(a) $S=\{z \in \mathbf{C}:|z|<1,|\operatorname{Re} z| \neq|\operatorname{Im} z|\}$,
(b) $S=\{z \in \mathbf{C}:|z-1|<|z+1|\}$,
sketch S. Determine whether S is
(i) open,
(ii) a domain,
(iii) bounded,
and find
(iv) the closure of S,
(v) the boundary of S.
3. (30 pts.) Prove the following statements:
(a) If $z=x+i y \in \mathbf{C}$, then $|x|+|y| \leq \sqrt{2}|z|$.
(b) If $z_{1}, z_{2} \in \mathbf{C}$, then $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
4. (25 pts.) Suppose $D=\{z \in \mathbf{C}:|z|<1\}$. Classify all differentiable functions $f: D \rightarrow \mathbf{C}$ such that $|f|=$ const on D. (Hint: Write $f(z)$ in polar form and use the Cauchy-Riemann equations to show that $f=$ const on D.)
