University of Texas at San Antonio

Complex Variables, MAT 3223 Exam $\mathcal{N}^{\underline{O}}1$, 3/4/92Instructor: D. Gokhman

Name:

1. (25 pts.) For the following functions $f: D \to \mathbb{C}$ find the largest domain $D \subseteq \mathbb{C}$ where f is differentiable. Verify the Cauchy-Riemann equations for f on D in part (a) only.

(a)
$$f(z) = 1/(z^2 + 1)$$

(b)
$$f(z) = 1/(z^6 - 5iz)$$
.

- 2. (20 pts.) For each of the following sets $S \in \mathbf{C}$
 - (a) $S = \{ z \in \mathbf{C} : |z| < 1, |\operatorname{Re} z| \neq |\operatorname{Im} z| \},\$

(b)
$$S = \{z \in \mathbb{C} : |z - 1| < |z + 1|\},\$$

sketch S. Determine whether S is

- (i) open,
- (ii) a domain,
- (iii) bounded,

and find

- (iv) the closure of S,
- (v) the boundary of S.
- 3. (30 pts.) Prove the following statements:
 - (a) If $z = x + iy \in \mathbf{C}$, then $|x| + |y| \le \sqrt{2} |z|$.
 - (b) If $z_1, z_2 \in \mathbf{C}$, then $|z_1 z_2| = |z_1| |z_2|$.
- 4. (25 pts.) Suppose $D = \{z \in \mathbb{C} : |z| < 1\}$. Classify all differentiable functions $f : D \to \mathbb{C}$ such that |f| = const on D. (Hint: Write f(z) in polar form and use the Cauchy-Riemann equations to show that f = const on D.)