University of Texas at San Antonio

Complex Variables, mat 3223
Final Exam, 5/7/92
Instructor: D. Gokhman

Name:

1. (48 pts.) Find and sketch all z such that:
(a) $e^{z}=0$.
(b) $\operatorname{Re}\left(e^{z}\right)=0$.
(c) The function $f(\zeta)=\zeta \operatorname{Re} \zeta$ is differentiable at z.
2. (52 pts.) CONTOUR INTEGRATION.

Evaluate the following contour integrals and sketch the contours.
(a) Evaluate the contour integral of \bar{z} along the straight line from 1 to $2 i$.
(b) Let $H=\{z: \operatorname{Im} z>0\}$. Let $A=(B[0,2]-\overline{B[0,1]}) \cap H$. Evaluate the contour integral of z / \bar{z} around ∂A (positively oriented).
3. (52 pts .) CAUCHY INTEGRATION THEORY.

Evaluate the following contour integrals:
(a) $\int_{\partial B[0,4]} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)} d z$.
(b) $\int_{\Gamma} \frac{\sin (2 z)}{(z+\pi)^{2}} d z$,
where Γ is the square with corners $5 \pm 5 i,-5 \pm 5 i$ traversed counterclockwise. Sketch the contours and all singularities.
4. (48 pts.) SERIES.

Find Laurent series for $f(z)=z\left(z^{2}+3 z+2\right)^{-1}$ valid in the following regions:
(a) $B[0,1]$.
(b) $B[0,2]-\overline{B[0,1]}$.
(c) $\mathbf{C}-\overline{B[0,2]}$.

Sketch the regions.
Hint: partial fractions.

