University of Texas at San Antonio

Complex Variables, MAT 3223 Final Exam, 5/7/92 Instructor: D. Gokhman

Name: .

- 1. (48 pts.) Find and sketch all z such that:
 - (a) $e^z = 0$.
 - (b) $\operatorname{Re}(e^z) = 0.$
 - (c) The function $f(\zeta) = \zeta \operatorname{Re} \zeta$ is differentiable at z.
- 2. (52 pts.) CONTOUR INTEGRATION. Evaluate the following contour integrals and sketch the contours.
 - (a) Evaluate the contour integral of \overline{z} along the straight line from 1 to 2i.
 - (b) Let $H = \{z: \text{Im } z > 0\}$. Let $A = (B[0,2] \overline{B[0,1]}) \cap H$. Evaluate the contour integral of z/\overline{z} around ∂A (positively oriented).
- 3. (52 pts.) CAUCHY INTEGRATION THEORY. Evaluate the following contour integrals:

(a)
$$\int_{\partial B[0,4]} \frac{e^z}{(z^2 + \pi^2)} dz.$$
 (b) $\int_{\Gamma} \frac{\sin(2z)}{(z + \pi)^2} dz.$

where Γ is the square with corners $5 \pm 5i$, $-5 \pm 5i$ traversed counterclockwise. Sketch the contours and all singularities.

4. (48 pts.) SERIES.

Find Laurent series for $f(z) = z(z^2+3z+2)^{-1}$ valid in the following regions:

(a)
$$B[0,1]$$
. (b) $B[0,2] - \overline{B[0,1]}$. (c) $\mathbf{C} - \overline{B[0,2]}$.

Sketch the regions.

Hint: partial fractions.