Please show all work. If you use a theorem, name it or state it.

- 1. Let $c \in \mathbf{Q}$ and $C = \{r \in \mathbf{Q}: r > c\}$.
 - (a) Prove that C is a Dedekind cut (C represents the real number c).
 - (b) Suppose D is a Dedekind cut. Prove that D < C if and only if $c \in D$.

Hint: $D < C \Leftrightarrow C$ is a proper subset of D.

- 2. Find all real x such that 4 < |x + 2| + |x 1| < 5.
- 3. For each of sup/inf/max/min either find it or state it doesn't exist for the set $\{1/n^2: n \in \mathbf{N}\}$. Prove your assertions.
- 4. Suppose A, B are nonempty bounded subsets of **R**. Prove that $\sup(A \cup B) = \max \{ \sup A, \sup B \}$.
- 5. Does the sequence $\frac{n}{n+1}$ converge? Prove your assertion. Same for the sequence $(-1)^n \frac{n}{n+1}$.

1	2	3	4	5	total (50)