Name: \qquad

Please show all work. If you use a theorem, name it or state it.

1. Suppose C and D are Dedekind cuts. Prove that their intersection $C \cap D$ is a Dedekind cut. Give a concrete example of a sequence of Dedekind cuts $\left(D_{n}\right)$ whose intersection is not a Dedekind cut.
2. Find all real x such that $3<|x-2|+|x+1|<7$.
3. Suppose A, B are nonempty bounded subsets of \mathbf{R} that are not disjoint. Prove that $\inf (A \cap B) \geq \min \{\inf A, \inf B\}$. Give a concrete example where the inequality is strict.
4. Suppose $\left(x_{n}\right)$ is sequence in \mathbf{R} that is not bounded. Prove that $\left(x_{n}\right)$ has a subsequence convergent to $+\infty$ or a subsequence convergent to $-\infty$.
5. Find limsup and liminf of the sequence $x_{n}=(-1)^{n}-\frac{1}{n}$. Prove your assertion for liminf.
6. Suppose $\left(x_{n}\right)$ is a bounded sequence and $\limsup x_{n}$ and $\liminf x_{n}$ belong to an open interval (a, b). Prove that $\exists k \in \mathbf{N} \forall n \in \mathbf{N} n \geq k \Rightarrow x_{n} \in(a, b)$.
7. Prove that every convergent sequence in \mathbf{R} is Cauchy.
8. Suppose $\sum x_{n}$ is convergent. Prove that the sequence $\left(x_{n}\right)$ converges to 0 .

1	2	3	4	5	6	7	8	total (80)

