Name:

- 1. (40 pts.) Suppose A and B are subsets of \mathbf{R} . For each the following statements determine whether the statement is true and prove the statement or give a counterexample.
 - (a) $\overline{A \cap B} = \overline{A} \cap \overline{B}$
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (c) If A and B are dense in **R**, then so is $A \cap B$.
 - (d) If A and B are dense in **R**, then so is $A \cup B$.
- 2. (20 pts.) Suppose $A \subseteq \mathbf{R}$.
 - (a) Show that the interior of A is empty if, and only if, $\mathbf{R} \setminus A$ is dense in \mathbf{R} .
 - (b) Show that if A is countable, then $\mathbf{R} \setminus A$ is dense in \mathbf{R} . (Hint: Show that if the interior of A is not empty, then A contains an interval.)
- 3. (20 pts.) Suppose $A \subseteq \mathbf{R}$ is not empty and bounded above, but max A does not exist. Show that A has a limit point in \mathbf{R} .

1	2(a-b)	2(c-d)	4	total (80)	%