Name: \qquad

1. (10 pts.) Suppose $\delta>0$. Prove that $|x-1|<\delta \Rightarrow\left|x^{2}-1\right|<\delta(\delta+2)$.
2. (10 pts.) Solve $2|x| \geq|x-1|$ for x.
3. (10 pts.) Suppose A is a nonempty bounded subset of \mathbf{R} such that $\inf A=\sup A$. Prove that A has exactly one element.
4. (10 pts.) Suppose A and B are bounded subsets of \mathbf{R} with $A \cap B \neq \varnothing$. Prove that $A \cap B$ is bounded below and $\inf (A \cap B) \geq \max \{\inf A, \inf B\}$.
5. (10 pts.) Let $\mathbf{R}^{+}=\{x \in \mathbf{R}: x>0\}$. Suppose A and B are nonempty bounded subsets of \mathbf{R}^{+}. Let $C=\{x: \exists a \in A, b \in B$ such that $x=a b\}$. Prove that $\sup C=$ $\sup A \sup B$.
Extra credit: What can you say about $\sup C$, if we remove the restriction that the elements of A and B are positive?

1	2	3	4	5	$\operatorname{total}(50)$	$\%$

