Foundations of Analysis / MAT 3213.001 Midterm 1 / February 16, 1998 / Instructor: D. Gokhman

Name:

- 1. (10 pts.) Suppose $\delta > 0$. Prove that $|x 1| < \delta \Rightarrow |x^2 1| < \delta(\delta + 2)$.
- 2. (10 pts.) Solve $2|x| \ge |x-1|$ for x.
- 3. (10 pts.) Suppose A is a nonempty bounded subset of **R** such that $\inf A = \sup A$. Prove that A has exactly one element.
- 4. (10 pts.) Suppose A and B are bounded subsets of **R** with $A \cap B \neq \emptyset$. Prove that $A \cap B$ is bounded below and $\inf(A \cap B) \ge \max{\{\inf A, \inf B\}}$.
- 5. (10 pts.) Let $\mathbf{R}^+ = \{x \in \mathbf{R} : x > 0\}$. Suppose A and B are nonempty bounded subsets of \mathbf{R}^+ . Let $C = \{x : \exists a \in A, b \in B \text{ such that } x = ab\}$. Prove that $\sup C = \sup A \sup B$.

Extra credit: What can you say about $\sup C$, if we remove the restriction that the elements of A and B are positive?

1	2	3	4	5	total (50)	%