Foundations of Analysis / MAT3213.001
Final / May 5, 1998 / Instructor: D. Gokhman

Name: \qquad Pseudonym: \qquad

1. (10 pts.) Suppose $\delta>0$. Prove that $|x-2|<\delta \Rightarrow\left|x^{2}-4\right|<\delta(\delta+4)$.
2. (10 pts.) Find all $x \in \mathbf{R}$ such that $|2 x| \leq|x-2|$.
3. (20 pts.) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f and g are 1-1, then $g \circ f$ is 1-1.
(b) Prove that if f is onto and $g \circ f$ is $1-1$, then g is $1-1$.
4. (20 pts.) Suppose A and B are nonempty bounded subsets of \mathbf{R}. Prove that $A \cup B$ is bounded below and $\inf (A \cup B)=\min \{\inf A, \inf B\}$.
5. (20 pts.) Suppose A is a nonempty bounded subset of \mathbf{R}. Prove that $\inf A \in \partial A$ by showing that $\inf A \in \bar{A}$, but $\inf A \notin A^{\circ}$.
6. (20 pts.) Suppose A and B are closed subsets of \mathbf{R}. Determine whether each of the following statements is true and prove the statement or give a counterexample.
(a) $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$
(b) $(A \cup B)^{\circ}=A^{\circ} \cup B^{\circ}$
7. (20 pts.) Let $A=\left\{1 / n: n \in \mathbf{Z}^{+}\right\}$. Determine $\sup A, \inf A, \max A, \min A, A^{\circ}$, $\mathrm{L}(A)$ and \bar{A}. Is A closed in \mathbf{R} ? Is A open in \mathbf{R} ?
8. (20 pts.) Suppose A is a nonempty subset of \mathbf{R}, which is bounded below, but does not have a minimum. Prove that $\mathrm{L}(A) \neq \varnothing$.

Have a great summer!

1	2	3	4	5	6	7	8	total (140)	$\%$

