Foundations of Analysis / MAT 3213.001 Final / May 5, 1998 / Instructor: D. Gokhman

_____ Pseudonym: _ Name: _ 1. (10 pts.) Suppose $\delta > 0$. Prove that $|x - 2| < \delta \Rightarrow |x^2 - 4| < \delta(\delta + 4)$. 2. (10 pts.) Find all $x \in \mathbf{R}$ such that $|2x| \le |x-2|$. 3. (20 pts.) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$. (a) Prove that if f and g are 1-1, then $g \circ f$ is 1-1. (b) Prove that if f is onto and $g \circ f$ is 1-1, then g is 1-1. 4. (20 pts.) Suppose A and B are nonempty bounded subsets of **R**. Prove that $A \cup B$ is bounded below and $\inf(A \cup B) = \min \{\inf A, \inf B\}$. 5. (20 pts.) Suppose A is a nonempty bounded subset of **R**. Prove that $\inf A \in \partial A$ by showing that $\inf A \in \overline{A}$, but $\inf A \notin A^{\circ}$. 6. (20 pts.) Suppose A and B are closed subsets of **R**. Determine whether each of the following statements is true and prove the statement or give a counterexample. (a) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$ (b) $(A \cup B)^\circ = A^\circ \cup B^\circ$ 7. (20 pts.) Let $A = \{1/n: n \in \mathbb{Z}^+\}$. Determine $\sup A$, $\inf A$, $\max A$, $\min A$, A° , L(A) and \overline{A} . Is A closed in \mathbb{R} ? Is A open in \mathbb{R} ?

8. (20 pts.) Suppose A is a nonempty subset of **R**, which is bounded below, but does not have a minimum. Prove that $L(A) \neq \emptyset$.

Have a great summer!

1	2	3	4	5	6	7	8	total (140)	%