```
Name: _
```

Show all work.

- 1. If p and q are propositions, the contrapositive tautology is that the proposition $p \Rightarrow q$ is equivalent to $\sim q \Rightarrow \sim p$. Use a truth table to prove this.
- 2. If A and B are sets, prove that $A \cup B = A$ if and only if $B \subseteq A$
- 3. Construct an explicit counterexample using finite sets to the (false) proposition that for any sets A and B we have $\mathscr{P}(A \cup B) = \mathscr{P}(A) \cup \mathscr{P}(B)$
- 4. Suppose A, B, C are sets. Prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- 5. For each $n \in \mathbf{N}$ let $A_n \subseteq \mathbf{R}$ be the interval $A_n = (0, \frac{1}{\sqrt{n}}]$. Find $\cap \{A_n : n \in \mathbf{N}\}$. Prove your assertion.

1	2	3	4	5	total (50)