Name: \qquad

Show all work.

1. Prove by induction that $\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{n}{2 n+1}$ for $n=1,2, \ldots$
2. Prove by induction that $3^{n} \geq 1+2^{n}$ for $n=1,2, \ldots$
3. Let $A=\{1,2,3\}$ and let $R=\{[1,3],[2,2],[3,1]\}$ be a relation on A. Find $R \circ R$ and $R \circ R \circ R$ and sketch a digraph for each of the relations $R, R \circ R, R \circ R \circ R$
4. Define a relation R on $\mathbf{R} \times \mathbf{R}$ by $[x, y] R[r, s] \Leftrightarrow x+y=r+s$. Prove that R is an equivalence relation. On the same set of axes sketch the equivalence class of $[1,2]$ and the equivalence class of $[1,3]$
5. Explain why the set of all even integers $2 \mathbf{Z}$ and the set of all odd integers $1+2 \mathbf{Z}$ form a partition of \mathbf{Z}. Describe the equivalence relation on \mathbf{Z} whose quotient set is the above partition $\{2 \mathbf{Z}, 1+2 \mathbf{Z}\}$

1	2	3	4	5	total (50)

