Name:

Show all work.

- 1. Prove by induction that $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$ for n = 1, 2, ...
- 2. Prove by induction that $3^n \ge 1 + 2^n$ for n = 1, 2, ...
- 3. Let $A = \{1, 2, 3\}$ and let $R = \{[1, 3], [2, 2], [3, 1]\}$ be a relation on A. Find $R \circ R$ and $R \circ R \circ R$ and sketch a digraph for each of the relations $R, R \circ R, R \circ R \circ R$
- 4. Define a relation R on $\mathbf{R} \times \mathbf{R}$ by $[x, y]R[r, s] \Leftrightarrow x + y = r + s$. Prove that R is an equivalence relation. On the same set of axes sketch the equivalence class of [1, 2] and the equivalence class of [1, 3]
- 5. Explain why the set of all even integers $2\mathbf{Z}$ and the set of all odd integers $1 + 2\mathbf{Z}$ form a partition of \mathbf{Z} . Describe the equivalence relation on \mathbf{Z} whose quotient set is the above partition $\{2\mathbf{Z}, 1 + 2\mathbf{Z}\}$

1	2	3	4	5	total (50)