Name: \qquad

Please show all work.

1. Let $S=\left\{\frac{1}{n}: n \in \mathbf{N}\right\} \subseteq \mathbf{R}$

Does S have a sup? inf? max? min? If so, find them. Prove your assertions.
2. Determine whether each of the following relations F on \mathbf{R} is a function. Explain.
(a) $F=\{[x, y] \in \mathbf{R} \times \mathbf{R}: x+y=2\}$
(b) $F=\left\{[x, y] \in \mathbf{R} \times \mathbf{R}: x^{2}+y^{2}=4\right\}$
3. Let $F: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ be the function defined by $F(x, y)=x+y$
(a) Prove that F is surjective.
(b) Sketch the inverse images $F^{-1}(\{0\})$ and $F^{-1}(\{1\})$ on the same graph.
4. Define a function $F: \mathbf{R} \rightarrow \mathbf{R}$ by $F(x)= \begin{cases}x+1 & \text { for } x<0 \\ -x & \text { for } x \geq 0\end{cases}$
(a) Sketch the graph of F and explain why F is neither injective nor surjective.
(b) Find forward and inverse images of intervals: $F([-1,1]), F^{-1}([0, \infty))$
5. Prove that $F:[1,2) \rightarrow(-\infty, 0]$ defined by $F(x)=\frac{x-1}{x-2}$ is bijective.

1	2	3	4	5	total (50)

