Name: _

Please show all work.

1. Let
$$S = \left\{ \frac{1}{n} : n \in \mathbf{N} \right\} \subseteq \mathbf{R}$$

Does S have a sup? inf? max? min? If so, find them. Prove your assertions.

- 2. Determine whether each of the following relations F on \mathbf{R} is a function. Explain.
 - (a) $F = \{ [x, y] \in \mathbf{R} \times \mathbf{R} : x + y = 2 \}$
 - (b) $F = \{[x, y] \in \mathbf{R} \times \mathbf{R}: x^2 + y^2 = 4\}$
- 3. Let $F: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be the function defined by F(x,y) = x + y
 - (a) Prove that F is surjective.
 - (b) Sketch the inverse images $F^{-1}(\{0\})$ and $F^{-1}(\{1\})$ on the same graph.
- 4. Define a function $F: \mathbf{R} \to \mathbf{R}$ by $F(x) = \begin{cases} x+1 & \text{for } x < 0 \\ -x & \text{for } x \ge 0 \end{cases}$
 - (a) Sketch the graph of F and explain why F is neither injective nor surjective.
 - (b) Find forward and inverse images of intervals: $F([-1,1]), F^{-1}([0,\infty))$
- 5. Prove that $F: [1,2) \to (-\infty,0]$ defined by $F(x) = \frac{x-1}{x-2}$ is bijective.

1	2	3	4	5	total (50)