Name: \qquad
Please show all work.

1. Let x_{n} be the sequence of integers recursively defined by

$$
\begin{aligned}
& x_{0}=0 \\
& x_{1}=-5 \\
& x_{n}=7 x_{n-1}-6 x_{n-2} \text { for } n>1
\end{aligned}
$$

Prove by induction on n that $x_{n}=1-6^{n}$ for all $n \geq 0$
2. For each natural number $n>0$ let A_{n} be the interval $\left(-\frac{1}{n}, 0\right)$
(a) Find the union $\bigcup_{n=1}^{\infty} A_{n}$ and the intersection $\bigcap_{n=1}^{\infty} A_{n}$ of this family of sets.
(b) Prove your assertions.
3. Define a relation S on the real line \mathbf{R} by $a S b \Leftrightarrow a-b$ is an integer multiple of 2π
(a) Prove that S is an equivalence relation.
(b) Describe the equivalence classes.
(c) Extra credit: Explain why the quotient set \mathbf{R} / S (the set of all equivalence classes) is in one-to-one correspondence with the unit circle.
4. For each of the following relations S on \mathbf{R}, determine whether S is reflexive, whether S is symmetric, and whether S is transitive. Explain.
(a) $a S b \Leftrightarrow a b=1$
(b) $a S b \Leftrightarrow a b \geq 0$

1	2	3	4	total (40)

