Name: \qquad

Please show all work.

1. If P, Q, R are propositions, use a truth table to prove that $(P \wedge Q) \vee R \Leftrightarrow(P \vee R) \wedge(Q \vee R)$
2. Using formal language and appropriate quantifiers, translate into symbolic form the following sentences. Determine whether they are equivalent and explain why or why not.

- Every integer is even or odd.
- Every integer is even or every integer is odd.

3. An integer greater than 1 is called prime precisely when its only positive divisors are itself and 1 . Write out this statement in the language of formal logic using appropriate quantifiers. Then negate it (and simplify) and write out the negation in words.
4. Suppose A, B, C are sets. For each of the following statements determine whether it is true. If true, prove it. If not, provide a concrete counterexample and explain why it works.
(a) $(A \subseteq B \wedge B \subseteq C) \Rightarrow A \subseteq C$
(b) $(A \subseteq B \wedge B \nsubseteq C) \Rightarrow A \nsubseteq C$

1	2	3	4	total (40)

