Name: \qquad

Please show all work.

1. Let $S=\left\{\frac{n}{n+1}: n \in \mathbf{N}\right\} \subseteq \mathbf{R}$

Does S have a sup? inf? max? min? If so, find them. Prove your assertions.
2. Determine whether each of the following relations $S: \mathbf{R} \rightarrow \mathbf{R}$ is a function. Prove your assertions.
(a) $S=\left\{[x, y] \in \mathbf{R}^{2}:(x-1)^{2}+y^{2}=4\right\}$
(b) $S=\left\{[x, y] \in \mathbf{R}^{2}:|y|<1\right\}$
3. Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by $f(x, y)=x+2 y$
(a) Prove that f is onto.
(b) Sketch the fibers $f^{-1}(\{-1\}), f^{-1}(\{0\}), f^{-1}(\{2\})$ on the same graph.
4. Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by $f(x)= \begin{cases}-2 x & \text { for } x<0 \\ x-2 & \text { for } x \geq 0\end{cases}$
(a) Prove that f is not onto.
(b) Find the following images and preimages: $f([-1,1]), f^{-1}([2, \infty))$
5. With f as in preceding problem, give concrete examples of subsets $E, D \subseteq \mathbf{R}$ such that $D \neq f^{-1}(f(D))$ and $E \neq f\left(f^{-1}(E)\right)$

1	2	3	4	5	total (50)

