Name: \qquad
Please show all work.

1. Construct a truth table to establish the equivalence of implication with its contrapositive. In other words, use a truth table to prove $(p \Rightarrow q) \Leftrightarrow(\sim q \Rightarrow \sim p)$.
2. Translate "everybody loves somebody sometime" into the formal language of predicate calculus. Negate it and translate the negation back into human language.
Hint: Let $p(x, y, t)$ denote " x loves y at time t."
3. Show that for arbitrary sets A, B, C, D we have $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$ and provide a concrete counterexample to subset the other way.
4. For each $n \in \mathbf{N}$ let $A_{n}=\{x \in \mathbf{R}: 0 \leq x \leq 1 / n\}=[0,1 / n]$. Find the union and the intersection of this family of sets. Prove your assertions.
5. Use the principle of mathematical induction to prove Faulhaber's formula

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

1	2	3	4	5	total (50)

