Name: _

Please show all work.

1. Let
$$f: \mathbf{R} \setminus \{-1\} \rightarrow \mathbf{R}, f(x) = \frac{x}{x+1}$$
.

- (a) Prove that f is not an increasing function on its domain, but its restrictions to intervals $f|_{(-\infty,-1)}$ and $f|_{(-1,\infty)}$ are strictly increasing.
- (b) Find a codomain for $f|_{(-1,\infty)}$ that makes the function bijective. Find the compositional inverse of our function. Sketch both our function and its inverse on the same set of axes.
- 2. Let $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 + 1$. Find and sketch:
 - (a) $f([-1,0] \cup [2,4])$.
 - (b) $f^{-1}([-1,5] \cup [17,26])$.
- 3. Suppose $f: A \to B$ is a function and R is a relation on A given by $xRy \Leftrightarrow f(x) = f(y)$.
 - (a) Prove that R is an equivalence relation.
 - (b) Prove that nonempty fibers of f are equivalence classes under R and $vice\ versa$.
- 4. Suppose $f: A \to B$ is a function and R is an equivalence relation on B with exactly two distinct equivalence classes $U, V \subseteq B$. Prove that $\{f^{-1}(U), f^{-1}(V)\}$ is a partition of A.

1	2	3	4	total (40)