Name: _

Please show all work.

- 1. Let $f: X \to Y$ be a function and for $x, x' \in X$ define $x \sim x' \Leftrightarrow f(x) = f(x')$. Prove \sim is an equivalence relation on X. Describe the equivalence classes for the cases when
 - (a) f is injective
 - (b) f is constant
 - (c) $f: \mathbf{Z} \to \mathbf{Z}, f(n)$ is the remainder after dividing n by 2.
- 2. In each case, sketch two distinct equivalence classes, where \sim is as in the above problem.
 - (a) $f: \mathbf{R}^2 \rightarrow \mathbf{R}, f([x, y]) = x^2 + y^2.$
 - (b) $f: \mathbf{R}^2 \to \mathbf{R}, f([x, y]) = x y.$
- 3. Let $S = \{x \in \mathbf{Q}: (\exists n \in \mathbf{N}) | x = 1/n \}$. If they exist, what are max S and min S? For S as a subset of \mathbf{Q} , same question for sup S and inf S. Prove your assertions.
- 4. Suppose S is a nonempty set and $\{A_s \subseteq \mathbf{Q} : s \in S\}$ is a family of rays to the left each without a maximum. Prove that $\bigcup_{s \in S} A_s$ is a ray to the left without a maximum.

Definition: $A \subseteq \mathbf{Q}$ is a ray to the left means $x < y \land y \in A \Rightarrow x \in A$.

5. Use completeness of **R** to show that **N** is not bounded above (as a subset of **R**). Use this to prove the Archimedean property of **R**: $x, y \in \mathbf{R} \land x > 0 \Rightarrow (\exists n \in \mathbf{N})[y < nx]$.

1	2	3	4	5	total (50)