Name: \qquad
Please show all work.

1. Let $f: X \rightarrow Y$ be a function and for $x, x^{\prime} \in X$ define $x \sim x^{\prime} \Leftrightarrow f(x)=f\left(x^{\prime}\right)$. Prove \sim is an equivalence relation on X. Describe the equivalence classes for the cases when
(a) f is injective
(b) f is constant
(c) $f: \mathbf{Z} \rightarrow \mathbf{Z}, f(n)$ is the remainder after dividing n by 2 .
2. In each case, sketch two distinct equivalence classes, where \sim is as in the above problem.
(a) $f: \mathbf{R}^{2} \rightarrow \mathbf{R}, f([x, y])=x^{2}+y^{2}$.
(b) $f: \mathbf{R}^{2} \rightarrow \mathbf{R}, f([x, y])=x-y$.
3. Let $S=\{x \in \mathbf{Q}:(\exists n \in \mathbf{N})[x=1 / n]\}$. If they exist, what are $\max S$ and $\min S$? For S as a subset of \mathbf{Q}, same question for $\sup S$ and $\inf S$. Prove your assertions.
4. Suppose S is a nonempty set and $\left\{A_{s} \subseteq \mathbf{Q}: s \in S\right\}$ is a family of rays to the left each without a maximum. Prove that $\bigcup_{s \in S} A_{s}$ is a ray to the left without a maximum.
Definition: $A \subseteq \mathbf{Q}$ is a ray to the left means $x<y \wedge y \in A \Rightarrow x \in A$.
5. Use completeness of \mathbf{R} to show that \mathbf{N} is not bounded above (as a subset of \mathbf{R}). Use this to prove the Archimedean property of $\mathbf{R}: x, y \in \mathbf{R} \wedge x>0 \Rightarrow(\exists n \in \mathbf{N})[y<n x]$.

1	2	3	4	5	total (50)

