Name: \qquad
Please show all work.

1. Construct the truth table for $(p \rightarrow q) \vee(q \rightarrow p)$ and draw a conclusion.
2. Write out a formal definition for divisibility. Start like this: integer m divides integer n (written $m \mid n$) means ... Hint: n should be m times something. Negate the definition to obtain a formal description for $m \nmid n$.
3. Write out a formal definition of a prime number. Start like this: a natural number n is prime means ... Hint: n must be at least 2 and the only natural numbers that divide n are 1 and n (you may use the $m \mid n$ and $m \nmid n$ shorthand to deal with divisibility). Negate the definition to obtain a formal description for n being not prime.
4. Prove or disprove subset in each direction between $(A \cap C) \times(B \cap D)$ and $(A \times B) \cap(C \times D)$.
5. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is given by $f(x)=\frac{1}{1+x^{2}}$. Find the following.
(a) $f_{*}(\mathbf{R})$
(b) $f^{*}(\mathbf{R})$
(c) $f^{*}\left(\left\{\frac{1}{2}\right\}\right)$
(d) $A \subseteq \mathbf{R}$ such that $A \neq \varnothing \wedge f^{*}(A)=\varnothing$
6. Construct functions f and g such that $g \circ f$ is bijective, but f is not surjective and g is not injective. Be sure to specify domains and co-domains. Extra credit: can you do this problem with the additional requirement that all the domains and co-domains be \mathbf{R} ?

1	2	3	4	5	6	total (60)	\%

