Name: \qquad

Please show all work.

1. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a function and let $F: \mathbf{R} \rightarrow \mathbf{R}^{2}$ be the function defined by $F(x)=$ $[x, f(x)]$. Prove that F is injective, but not surjective. Find a one-sided inverse for F (with proof). Show that it is not unique.
Note: The image of F is known as the graph of $y=f(x)$.
2. Let $f: X \rightarrow Y$ be a function and for $x, x^{\prime} \in X$ define $x \sim x^{\prime} \Leftrightarrow f(x)=f\left(x^{\prime}\right)$. Prove \sim is an equivalence relation on X. Describe the equivalence classes for the case when f is injective. Same for when f is constant. Same for $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x^{2}$.
3. Prove that a nonempty finite linearly ordered set has a minimum.

Hint: Induction on the size of the set.
4. Let $S=\left\{x \in \mathbf{Q}:(\exists n \in \mathbf{Z})\left[x=2^{n}\right]\right\}$. If they exist, what are $\max S$ and $\min S$? For S as a subset of \mathbf{Q}, same question for $\sup S$ and $\inf S$. Prove your assertions about min and inf.
5. Show that a union of initial segments in \mathbf{Q} is an initial segment. Give a concrete example of a collection of Dedekind cuts, whose union is not a Dedekind cut.

1	2	3	4	5	total (50)	\%
Prelim. course grade:					$\%$	

