Name: ____

Please show all work.

- 1. Prove by induction that $n! \leq n^n$ for all natural numbers $n \geq 1$.
- 2. Define a sequence recursively as follows: $a_0 = 0, a_1 = 1$, and $a_n = 5a_{n-1} 6a_{n-2}$ for all $n \ge 2$. Prove that $a_n = 3^n 2^n$ for all natural numbers.
- 3. Construct a truth table for $(p \to q) \leftrightarrow (q \to p)$. Is it a tautology, contradiction, or neither?
- 4. Prove that integer multiples of 3 is a set. You may assume \mathbf{Z} is a set.
- 5. Prove or disprove subset in each direction between $(A \cup C) \times (B \cup D)$ and $(A \times B) \cup (C \times D)$.
- 6. Suppose $f: \mathbf{R} \to \mathbf{R}$ is the principal branch of arctangent. Find the following.

(a) $f_*(\mathbf{R})$ (b) $f^*((-\infty, -\frac{\pi}{4}])$ (c) $A \subseteq \mathbf{R}$ such that $A \neq \emptyset \land f^*(A) = \emptyset$

1	2	3	4	5	6	total (60)	%

Prelim. course grade: %