Name: $\qquad$

Please show all work.

1. Prove by induction that $n!\leq n^{n}$ for all natural numbers $n \geq 1$.
2. Define a sequence recursively as follows: $a_{0}=0, a_{1}=1$, and $a_{n}=5 a_{n-1}-6 a_{n-2}$ for all $n \geq 2$. Prove that $a_{n}=3^{n}-2^{n}$ for all natural numbers.
3. Construct a truth table for $(p \rightarrow q) \leftrightarrow(q \rightarrow p)$. Is it a tautology, contradiction, or neither?
4. Prove that integer multiples of 3 is a set. You may assume $\mathbf{Z}$ is a set.
5. Prove or disprove subset in each direction between $(A \cup C) \times(B \cup D)$ and $(A \times B) \cup(C \times D)$.
6. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is the principal branch of arctangent. Find the following.
(a) $f_{*}(\mathbf{R})$
(b) $f^{*}\left(\left(-\infty,-\frac{\pi}{4}\right]\right)$
(c) $A \subseteq \mathbf{R}$ such that $A \neq \varnothing \wedge f^{*}(A)=\varnothing$

| 1 | 2 | 3 | 4 | 5 | 6 | total (60) | $\%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |
| Prelim. course grade: $\%$ |  |  |  |  |  |  |  |

