Name: _

Please show all work.

- 1. Prove that for any positive integer n the quantity $2^n 3^{2n} 1$ is divisible by 17.
- 2. Construct a truth table for $(p \to q) \to (q \to p)$. Is it a tautology, contradiction, or neither?
- 3. Prove that irrational real numbers form a set. You may assume \mathbf{Z} and \mathbf{R} are sets.
- 4. Prove or disprove subset in each direction between $(A \setminus B) \times (C \setminus D)$ and $(A \times C) \setminus (B \times D)$.
- 5. Suppose $f: \mathbf{R} \to \mathbf{R}$ is given by $f(x) = \sin x$. Find the following. (a) $f_*(\mathbf{R})$ (b) $f^*(\{1, -1\})$ (c) $A \subseteq \mathbf{R}$ such that $A \neq \emptyset \land f^*(A) = \emptyset$
- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by f([x, y]) = x y. Prove that f is surjective and not injective. Find a one-sided inverse for f (with proof). Show that it is not unique.
- 7. Let $f: X \to Y$ be a function and for $x, x' \in X$ define $x \sim x' \Leftrightarrow f(x) = f(x')$. Prove \sim is an equivalence relation on X. Describe the equivalence classes for the case when f is injective. Same for when f is constant. Same for $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = \sin x$.
- 8. Let $S = \{x \in \mathbf{Q}: (\exists n \in \mathbf{N}) | x = 3^{-n} \}$. If they exist, what are max S and min S? For S as a subset of \mathbf{Q} , same question for sup S and inf S. Prove your assertions about min and inf.
- 9. Prove that the partial order \subseteq on **R** is a linear order, by showing that for any two Dedekind cuts D and D' we have $D \subseteq D' \lor D' \subseteq D$.
- 10. Show that the intersection of a nonempty family of initial segments in \mathbf{Q} is an initial segment. Give a concrete example of a nonempty collection of Dedekind cuts, whose intersection is not a Dedekind cut.

1	2	3	4	5	6	7	8	9	10	total (100)