Name: $\qquad$
Please show all work.

1. Prove that for any positive integer $n$ the quantity $2^{n} 3^{2 n}-1$ is divisible by 17 .
2. Construct a truth table for $(p \rightarrow q) \rightarrow(q \rightarrow p)$. Is it a tautology, contradiction, or neither?
3. Prove that irrational real numbers form a set. You may assume $\mathbf{Z}$ and $\mathbf{R}$ are sets.
4. Prove or disprove subset in each direction between $(A \backslash B) \times(C \backslash D)$ and $(A \times C) \backslash(B \times D)$.
5. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is given by $f(x)=\sin x$. Find the following.
(a) $f_{*}(\mathbf{R})$
(b) $f^{*}(\{1,-1\})$
(c) $A \subseteq \mathbf{R}$ such that $A \neq \varnothing \wedge f^{*}(A)=\varnothing$
6. Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be given by $f([x, y])=x-y$. Prove that $f$ is surjective and not injective. Find a one-sided inverse for $f$ (with proof). Show that it is not unique.
7. Let $f: X \rightarrow Y$ be a function and for $x, x^{\prime} \in X$ define $x \sim x^{\prime} \Leftrightarrow f(x)=f\left(x^{\prime}\right)$. Prove $\sim$ is an equivalence relation on $X$. Describe the equivalence classes for the case when $f$ is injective. Same for when $f$ is constant. Same for $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=\sin x$.
8. Let $S=\left\{x \in \mathbf{Q}:(\exists n \in \mathbf{N})\left[x=3^{-n}\right]\right\}$. If they exist, what are $\max S$ and $\min S$ ? For $S$ as a subset of $\mathbf{Q}$, same question for $\sup S$ and $\inf S$. Prove your assertions about min and inf.
9. Prove that the partial order $\subseteq$ on $\mathbf{R}$ is a linear order, by showing that for any two Dedekind cuts $D$ and $D^{\prime}$ we have $D \subseteq D^{\prime} \vee D^{\prime} \subseteq D$.
10. Show that the intersection of a nonempty family of initial segments in $\mathbf{Q}$ is an initial segment. Give a concrete example of a nonempty collection of Dedekind cuts, whose intersection is not a Dedekind cut.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | total (100) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |

